Special values of parameters in Diamond diagrams (Q2811176)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Valeurs spéciales de paramètres de diagrammes de Diamond |
scientific article; zbMATH DE number 6591554
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Special values of parameters in Diamond diagrams |
scientific article; zbMATH DE number 6591554 |
Statements
10 June 2016
0 references
Langlands correspondence
0 references
Diamond diagrams
0 references
representations of \(p\)-adic groups
0 references
0 references
0 references
0 references
Special values of parameters in Diamond diagrams (English)
0 references
Although the Langlands correspondence modulo a prime \(p\) for \(\text{GL}_2 (\mathbb Q_p)\) is well understood, the case for \(\text{GL}_2 (L)\) with \(L \neq \mathbb Q_p\) remains largely mysterious. The main obstacle in this case is the existence of many more representations of \(\text{GL}_2 (L)\) than 2-dimensional representations of \(\text{Gal} (\overline{\mathbb Q}_p/L)\). Let \(L\) be a finite unramified extension of \(\mathbb Q_p\), and let \(\overline{\rho}: \text{Gal} (\overline{\mathbb Q}_p/L) \to \text{GL}_2 (\overline{\mathbb F}_p)\) be a reducible continuous generic representation. In this paper, the author follows the strategy described in the paper of \textit{C. Breuil} and \textit{F. Diamond} [Ann. Sci. Éc. Norm. Supér. (4) 47, No. 5, 905--974 (2014; Zbl 1309.11046)] to prove how the extension type of \(\overline{\rho}\) is related to certain parameters that appear in the Diamond diagrams associated to \(\overline{\rho}\).
0 references