On semi-classical limit of nonlinear quantum scattering (Q2811191)

From MaRDI portal





scientific article; zbMATH DE number 6591569
Language Label Description Also known as
English
On semi-classical limit of nonlinear quantum scattering
scientific article; zbMATH DE number 6591569

    Statements

    On semi-classical limit of nonlinear quantum scattering (English)
    0 references
    0 references
    10 June 2016
    0 references
    nonlinear Schrödinger equation
    0 references
    coherent states
    0 references
    semi-classical limit
    0 references
    scattering
    0 references
    The author considers the nonlinear equation NEWLINE\[NEWLINE i\varepsilon \partial_t \psi^\varepsilon +\frac{\varepsilon^2}{2}\Delta \psi^\varepsilon = V(x)\psi^\varepsilon + \varepsilon^\alpha|\psi^\varepsilon|^{2\sigma}\psi^\varepsilon,NEWLINE\]NEWLINE with a short-range smooth real-valued potential \(V\) and both semi-classical (\(\varepsilon\to 0\)) and large time (\(t\to \pm \infty\)) limits. It is assumed that the attractive part of the potential \(\left(\frac{x}{|x|}\cdot \nabla V(x)\right)_+\) is not too large and there exists \(\mu>1\) such that NEWLINE\[NEWLINE|\partial^\alpha V|\leq \frac{C}{(1+|x|)^{\mu+\alpha}}, \forall\alpha\in{\mathbb N}^d. NEWLINE\]NEWLINENEWLINENEWLINEIt is proved that, if \(d\geq 3, \frac{2}{d}<\sigma<\frac{2}{d-2}, \mu>2\), one can define a scattering operator in \(H^1({\mathbb R}^d)\).NEWLINENEWLINEThe second result of this paper concerns the case \(d\geq 1, \frac{2}{d}\leq\sigma<\frac{2}{(d-2)_+}, \mu>1\). For data under the form of coherent state, it is proved that the scattering theory is available for the envelope equation.NEWLINENEWLINEThe main result of the paper under review gives the asymptotic expansion of \(S^\varepsilon \psi^\varepsilon_- (\varepsilon\to 0)\) in the case \(\sigma=1, \alpha=5/2\), where \(S^\varepsilon:\psi^\varepsilon_-\to\psi^\varepsilon_+\) is the (quantum) scattering operator.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references