Weak solutions for the Hamiltonian bifurcation problem (Q2812466)

From MaRDI portal





scientific article; zbMATH DE number 6594394
Language Label Description Also known as
English
Weak solutions for the Hamiltonian bifurcation problem
scientific article; zbMATH DE number 6594394

    Statements

    0 references
    0 references
    16 June 2016
    0 references
    Hamiltonian system
    0 references
    bifurcation problem
    0 references
    superquadratic nonlinearity
    0 references
    variational method
    0 references
    critical point theory
    0 references
    \(S^{1}\)-invariant function
    0 references
    \(S^{1}\)-invariant subspace
    0 references
    \((P.S.)^{\ast}_{c}\) condition
    0 references
    Weak solutions for the Hamiltonian bifurcation problem (English)
    0 references
    The paper deals with the Hamiltonian system with the superquadratic nonlinearity and periodic condition NEWLINE\[NEWLINE\begin{cases} \dot p(t)=-\lambda q(t)-H_q(t,p(t),q(t)),\\ \dot q(t)=\lambda p(t)+H_p(t,p(t),q(t)),\end{cases}\leqno(1)NEWLINE\]NEWLINE where \(p,\,q\in\mathbb{R}^n\), \(H(t,z(t))\) is a \(C^1\) function defined on \(\mathbb{R}^1\times \mathbb{R}^{2n}\), \(n\geq 1\), which is \(2\pi\)-periodic with respect to the first variable \(t\), and \(\lambda\in\mathbb{R}\). By using the variational method and the critical point theory in terms of the \(S^1\)-invariant functions, the authors investigate the number of the \(2\pi\)-periodic weak solutions for the bifurcation problem of \((1)\).
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references