On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces (Q2812614)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces |
scientific article; zbMATH DE number 6594597
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces |
scientific article; zbMATH DE number 6594597 |
Statements
On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces (English)
0 references
17 June 2016
0 references
functional inequalities
0 references
hyperstability
0 references
Cauchy-Jensen functional equation
0 references
fixed point method
0 references
Banach space
0 references
0 references
0 references
0 references
Let \(X\) be a normed space and \(Y\) be a Banach space. The following two results are achieved.NEWLINENEWLINEIf \(f: X \to Y\) satisfies the condition NEWLINE\[NEWLINE \|f \left( \frac{x + y}{2} + z \right) + f \left( \frac{x - y}{2} + z \right) - 2f(z) - f(x) \| \leq c \|x\|^p \|y\|^q \|z\|^r, \quad x, y, z \in X \setminus \{0\}, NEWLINE\]NEWLINE where \(c \geq 0\) and \(p, q, r \in \mathbb{R}\) with \(p + q + r \notin \{0,1 \}\), then NEWLINE\[NEWLINEf \left( \frac{x + y}{2} + z \right) + f \left( \frac{x - y}{2} + z \right) = 2f(z) + f(x)\tag{a}NEWLINE\]NEWLINE on \(X \setminus \{0 \}\) (Theorems 2.1--2.3).NEWLINENEWLINEIf \(f: X \to Y\) satisfies the condition NEWLINE\[NEWLINE \|f \left( \frac{x + y}{2} + z \right) + f \left( \frac{x - y}{2} + z \right) - 2f(z) - f(x) \| \leq c(\|x\|^p + \|y\|^p + \|z\|^p), \;x, y, z \in X \setminus \{0\}, NEWLINE\]NEWLINE where \(c \geq 0\) and \(p< 0\), then \(f\) is a solution of (a) (Theorem 2.4).
0 references