Some generalizations of the Eneström-Kakeya theorem (Q2813853)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some generalizations of the Eneström–Kakeya theorem |
scientific article; zbMATH DE number 6598430
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some generalizations of the Eneström-Kakeya theorem |
scientific article; zbMATH DE number 6598430 |
Statements
27 June 2016
0 references
real polynomials
0 references
location of zeros
0 references
0.9999999
0 references
0.9889022
0 references
0.9888189
0 references
0.9825517
0 references
0.9818118
0 references
Some generalizations of the Eneström-Kakeya theorem (English)
0 references
The main result of the paper is the following.NEWLINENEWLINETheorem. Let \(p(z) =\sum\limits_{j=0}^n a_jz^j\) be a polynomial of degree \(n\) with real coefficients. If for some real numbers \(\alpha\) and \(\beta\) NEWLINE\[NEWLINEa_0-\beta \leq a_1\leq a_2 \leq \dots \leq a_n +\alpha,NEWLINE\]NEWLINE then all the zeros of \(p(z)\) lie in the disc NEWLINE\[NEWLINE \left| z+\frac{\alpha}{a_n} \right|\leq \frac{1}{|a_n|}\big[ a_n +\alpha -a_0 + \beta +|\beta | + |a_0|\big]. NEWLINE\]NEWLINE Also an analogous theorem is proved, where, for the coefficients, NEWLINE\[NEWLINE a_0 - s \leq a_1 \leq a_2 \leq \dots \leq a_{\lambda -1}\leq a_{\lambda} \geq a_{\lambda +1} \geq \dots \geq a_{n-1}\geq a_n +t, NEWLINE\]NEWLINE holds with some real numbers \(t, s\) and for some integer \(\lambda\), with \(0< \lambda < n\).NEWLINENEWLINEThe results extend and generalize the result of \textit{A. Aziz} and \textit{B. A. Zargar} [Anal. Theory Appl. 28, No. 2, 180--188 (2012; Zbl 1265.30011)].
0 references