A degree theory framework for semilinear elliptic systems (Q2814396)

From MaRDI portal





scientific article; zbMATH DE number 6596139
Language Label Description Also known as
English
A degree theory framework for semilinear elliptic systems
scientific article; zbMATH DE number 6596139

    Statements

    A degree theory framework for semilinear elliptic systems (English)
    0 references
    0 references
    0 references
    22 June 2016
    0 references
    existence
    0 references
    ground state solution
    0 references
    Lane-Emden system
    0 references
    Schrödinger system
    0 references
    shooting method
    0 references
    topological degree theory
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    Let \(F:=(f_1,\dots,f_L):\mathbb R_+^L\rightarrow \mathbb R_+^L\) be a continuous function satisfying certain non-degeneracy conditions, with \(F(0)=0\) and \(F\) locally Lipschitz continuous in the interior of \(\mathbb R_+^L\). Using a degree theoretic approach for the classical shooting method, the authors establish the following result: The system NEWLINE\[NEWLINE-\Delta u_1=f_1(u_1,u_2,\dots,u_L), \dots, -\Delta u_L=f_L(u_1,u_2,\dots,u_L) \text{ in }\mathbb R^n,NEWLINE\]NEWLINE admits a classical positive radially symmetric solution which vanishes uniformly at infinity provided that the boundary value problem NEWLINE\[NEWLINE\begin{gathered} -\Delta u_1=f_1(u_1,u_2,\dots,u_L), \dots, -\Delta u_L=f_L(u_1,u_2,\dots,u_L) \text{ in }B_R(0),\\ u_i=0, \text{ for }i=1,\dots,L \text{ on }\partial B_R(0),\end{gathered}NEWLINE\]NEWLINE admits no positive radially symmetric classical solution, for all \(R>0\). Here, \(B_R(0)\) is the ball of \(\mathbb{R}^n\) centered at \(0\), with radius \(R\).NEWLINENEWLINEAs an application of the above result, the authors find sufficient conditions on the nonnegative exponents \(s,t,p,q\) for the existence of positive radially symmetric classical solutions which vanish uniformly at infinity to the systems NEWLINE\[NEWLINE-\Delta u=u^sv^q, \quad -\Delta v=v^tu^p \text{ in }\mathbb{R}^nNEWLINE\]NEWLINE and NEWLINE\[NEWLINE-\Delta u=u^s+v^q,\quad -\Delta v=v^t+u^p \text{ in }\mathbb{R}^n.NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references