On Gauss sums and the evaluation of Stechkin's constant (Q2814452)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Gauss sums and the evaluation of Stechkin's constant |
scientific article; zbMATH DE number 6596199
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Gauss sums and the evaluation of Stechkin's constant |
scientific article; zbMATH DE number 6596199 |
Statements
22 June 2016
0 references
Stechkin's constant
0 references
sphere packing
0 references
Gauss sums
0 references
On Gauss sums and the evaluation of Stechkin's constant (English)
0 references
The Gauss sums are defined by NEWLINE\[NEWLINE S_n\left(a,q\right)=\sum_{x\bmod q}\text{e}\left(\frac{ax^n}{q}\right), NEWLINE\]NEWLINE where \(\text{e}(t)=e^{2\pi it}\) for all \(t\in \mathbb{R}\). Denote NEWLINE\[NEWLINE A(n)=\sup_{q\geq 2}\max_{\text{gcd}(a,q)=1}\frac{\left|S_n\left(a,q\right)\right|}{q^{1-\frac{1}{n}}}. NEWLINE\]NEWLINE This paper shows that \(A(n)<A(6)\) for all \(n\geq 2\), \(n\neq 6\), and NEWLINE\[NEWLINE A(6)=\frac{\left|S_6\left(4787, 4606056\right)\right|}{4606056^{\frac{5}{6}}}=4.709236\dotsNEWLINE\]
0 references