On relations between operator valued \(\alpha\)-divergence and relative operator entropies (Q2815616)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On relations between operator valued \(\alpha\)-divergence and relative operator entropies |
scientific article; zbMATH DE number 6599622
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On relations between operator valued \(\alpha\)-divergence and relative operator entropies |
scientific article; zbMATH DE number 6599622 |
Statements
29 June 2016
0 references
operator divergence
0 references
operator-valued \(\alpha\)-divergence
0 references
relative operator entropy
0 references
Tsallis relative operator entropy
0 references
operator mean
0 references
On relations between operator valued \(\alpha\)-divergence and relative operator entropies (English)
0 references
Let \(\mathcal{H}\) be a complex Hilbert space and \(B(\mathcal{H})_{+}\) be the set of all positive definite bounded linear operators on \(\mathcal{H}\). The authors give elementary properties of the operator-valued \(\alpha\)-divergence, defined byNEWLINENEWLINENEWLINE\[NEWLINE D_{\alpha}(A,B):= \frac{1}{\alpha(1-\alpha)}(A\nabla_{\alpha}B- A\sharp_{\alpha}B) NEWLINE\]NEWLINENEWLINENEWLINEfor \(\alpha\in (0,1)\), \(A,B\in B(\mathcal{H})_{+}\), where \(A\nabla_{\alpha}B=(1-\alpha)A+\alpha B\) and \(A\sharp_{\alpha}B=A^{\frac{1}{2}} (A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{\alpha} A^{\frac{1}{2}}\) for \(\alpha\in [0,1]\). Next, the authors define the noncommutative ratio as follows:NEWLINENEWLINENEWLINE\[NEWLINE \mathcal{R}(u,v;A,B):=(A\natural_{u+v}B) (A\natural_{u}B)^{-1} \quad (u,v\in \mathbb{R}), NEWLINE\]NEWLINENEWLINENEWLINEwhere \(A\natural_{u}B= A^{\frac{1}{2}} (A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{u} A^{\frac{1}{2}}\) for \(u\in \mathbb{R}\) and \(A,B\in B(\mathcal{H})_{+}\), and study some elementary properties of it from a geometrical viewpoint.
0 references