\(L_p\)-estimates of solutions to \(n\)-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation (Q2816490)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: <i>L</i><sub><i>p</i></sub>-Estimates of Solutions to <i>n</i>-Dimensional Parabolic-Parabolic System for Chemotaxis with Subquadratic Degradation |
scientific article; zbMATH DE number 6618816
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L_p\)-estimates of solutions to \(n\)-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation |
scientific article; zbMATH DE number 6618816 |
Statements
23 August 2016
0 references
chemotaxis
0 references
parabolic-parabolic model
0 references
logistic source
0 references
global existence
0 references
\(L_p\)-estimates of solutions to \(n\)-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation (English)
0 references
The authors study a parabolic-parabolic system of chemotaxis NEWLINE\[NEWLINEu_t=\Delta u-\chi\nabla\cdot(u\nabla v)+f(u),NEWLINE\]NEWLINE NEWLINE\[NEWLINE\tau v_t=\Delta v-v+g(u),NEWLINE\]NEWLINE with a growth \(f(u)\) and a secretion \(g(u)\) terms, in bounded domains of \(\mathbb R^n\). Under assumptions that \(f(u)=u-\mu u^\alpha\), \(g(u)=u(1+u)^{\beta-1}\) with \(\alpha>1\), \(0<\beta\leq 2\) and \(2\beta<\alpha-1\), the global in time existence of solutions is proved in the \(L^p\) setting with \(p>n\). These results are extensions of the analysis of a related parabolic-elliptic (\(\tau=0\)) model by M. Winkler et al.
0 references