On a lower bound of the Kobayashi metric (Q2817015)

From MaRDI portal





scientific article; zbMATH DE number 6620004
Language Label Description Also known as
English
On a lower bound of the Kobayashi metric
scientific article; zbMATH DE number 6620004

    Statements

    On a lower bound of the Kobayashi metric (English)
    0 references
    26 August 2016
    0 references
    Carathéodory metric
    0 references
    Kobayashi metric
    0 references
    convex domains
    0 references
    0 references
    The author presents the following characterization of convex domains in \(\mathbb C^n\) in terms of lower bounds for invariant metrics. For a domain \(D\subset\mathbb C^n\) the following conditions are equivalent: NEWLINENEWLINENEWLINE (a) \(D\) is convex; NEWLINENEWLINENEWLINENEWLINE (b) \(\gamma_D(z;X)\geq\frac1{2d_D(z;X)}\), \(z\in D\), \(X\in\mathbb C^n\), where \(\gamma_D\) stands for the Carathéodory metric and \(d_D(z;X):=\sup\big\{r>0: z+\lambda X\in D\) for all \(|\lambda|<r\big\}\); NEWLINENEWLINENEWLINENEWLINE (c) \(\liminf_{z\to a}\frac{2\varkappa_D(z;z-a)-1}{\|z-a\|}\geq0\), \(a\in\partial D\), where \(\varkappa_D\) stands for the Kobayashi metric.
    0 references

    Identifiers