Strong converse theorems using Rényi entropies (Q2820904)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Strong converse theorems using Rényi entropies |
scientific article; zbMATH DE number 6626334
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Strong converse theorems using Rényi entropies |
scientific article; zbMATH DE number 6626334 |
Statements
Strong converse theorems using Rényi entropies (English)
0 references
12 September 2016
0 references
quantum communication
0 references
data compression
0 references
state distribution
0 references
Renyi entropy
0 references
Renyi relative entropy
0 references
0 references
0 references
0 references
0 references
0 references
0.9145529
0 references
0.9041369
0 references
0 references
0.88770366
0 references
0.88229024
0 references
0 references
0 references
0 references
0 references
For many processes such as quantum communication via a noisy channel, the error \(\varepsilon_n\) corresponding to using the resource \(n\) times increases with \(n\) as \(\varepsilon_n\geq 1-\exp(-K\cdot n)\). This inequality is known as the \textit{strong converse property}.NEWLINENEWLINEIn this paper, the authors prove this property for different tasks such as state redistribution, data compression, etc. To prove these results, the authors use the quantum analog \(S_\alpha(\rho)=(1-\alpha)^{-1}\cdot \log(\text{Tr}(\rho^\alpha))\) of Rényi's entropy and the corresponding quantum analogue of Rényi's relative entropy.
0 references