Weak Galerkin finite element methods for linear parabolic integro-differential equations (Q2821185)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weak Galerkin finite element methods for linear parabolic integro-differential equations |
scientific article; zbMATH DE number 6628231
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weak Galerkin finite element methods for linear parabolic integro-differential equations |
scientific article; zbMATH DE number 6628231 |
Statements
Weak Galerkin finite element methods for linear parabolic integro-differential equations (English)
0 references
16 September 2016
0 references
weak Galerkin methods
0 references
finite-element methods
0 references
error estimates
0 references
semidiscretization
0 references
linear parabolic integro-differential problem
0 references
numerical example
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
This paper deals with the linear parabolic integro-differential problem NEWLINE\[NEWLINE u_t(\mathbf{x},t)-\nabla\cdot(A\nabla u(\mathbf{x},t))-\int\limits_{0}^{t} \nabla\cdot(B\nabla u(\mathbf{x},\tau))d\tau=f(\mathbf{x},t), \; (\mathbf{x},t)\in\Omega\times(0,T], NEWLINE\]NEWLINE NEWLINE\[NEWLINE u=g(\mathbf{x},t), \; (\mathbf{x},t)\in\partial\Omega\times(0,T],\quad u(\mathbf{x},0)=\psi(\mathbf{x}), \; \mathbf{x}\in\Omega, NEWLINE\]NEWLINE where \(\mathbf{x}=(x_1,x_2),\;\Omega\subset \mathbb{R}^2\) is a bounded convex polygonal domain with the boundary \(\partial\Omega\), \(A=[a_{ij}(\mathbf{x},t)]_{2\times 2}\) and \(B=[b_{ij}(\mathbf{x},t)]_{2\times 2}\) are matrix-valued functions defined on \(\Omega\times (0,T]\).NEWLINENEWLINEThe authors propose the semidiscrete and fully discrete weak Galerkin finite element schemes for this problem. Optimal error estimates are established for the corresponding numerical approximations in both \(L^2\) and \(H^1\) norms. Several illustrative numerical examples are presented in conclusion.
0 references