Quadrature identities for interlacing and orthogonal polynomials (Q2821742)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quadrature identities for interlacing and orthogonal polynomials |
scientific article; zbMATH DE number 6629327
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quadrature identities for interlacing and orthogonal polynomials |
scientific article; zbMATH DE number 6629327 |
Statements
Quadrature identities for interlacing and orthogonal polynomials (English)
0 references
23 September 2016
0 references
orthogonal polynomials on the real line
0 references
Geronimus type formula
0 references
quadrature formula
0 references
interlacing polynomials
0 references
0 references
0 references
0 references
Let \(S\) be a real polynomial of degree \(n\) with real simple zeros \(\{x_j\}_{j=1}^n\). Let \(R\) be a real polynomial of degree \(n-1\) where zeros interlace those of \(S\). We prove the quadrature identity NEWLINE\[NEWLINE\int_{-\infty}^{\infty}\frac{P(t)}{S^2(t)}h\left(\frac{R}{S}(t)\right)\,dt=\int_{-\infty}^{\infty}h(t)\,dt\sum_{j=1}^n\frac{P(x_j)}{(RS')(x_j)},NEWLINE\]NEWLINE valid for all polynomials \(P\) of degree \(\leq 2n-2\) and any \(h\in L_1(\mathbb R)\). We deduce identities involving orthogonal polynomials and weak convergence results involving orthogonal polynomials.
0 references