Quadrature identities for interlacing and orthogonal polynomials (Q2821742)

From MaRDI portal





scientific article; zbMATH DE number 6629327
Language Label Description Also known as
English
Quadrature identities for interlacing and orthogonal polynomials
scientific article; zbMATH DE number 6629327

    Statements

    Quadrature identities for interlacing and orthogonal polynomials (English)
    0 references
    23 September 2016
    0 references
    orthogonal polynomials on the real line
    0 references
    Geronimus type formula
    0 references
    quadrature formula
    0 references
    interlacing polynomials
    0 references
    0 references
    Let \(S\) be a real polynomial of degree \(n\) with real simple zeros \(\{x_j\}_{j=1}^n\). Let \(R\) be a real polynomial of degree \(n-1\) where zeros interlace those of \(S\). We prove the quadrature identity NEWLINE\[NEWLINE\int_{-\infty}^{\infty}\frac{P(t)}{S^2(t)}h\left(\frac{R}{S}(t)\right)\,dt=\int_{-\infty}^{\infty}h(t)\,dt\sum_{j=1}^n\frac{P(x_j)}{(RS')(x_j)},NEWLINE\]NEWLINE valid for all polynomials \(P\) of degree \(\leq 2n-2\) and any \(h\in L_1(\mathbb R)\). We deduce identities involving orthogonal polynomials and weak convergence results involving orthogonal polynomials.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references