A priori error estimates for three dimensional parabolic optimal control problems with pointwise control (Q2821804)

From MaRDI portal





scientific article; zbMATH DE number 6629379
Language Label Description Also known as
English
A priori error estimates for three dimensional parabolic optimal control problems with pointwise control
scientific article; zbMATH DE number 6629379

    Statements

    0 references
    0 references
    23 September 2016
    0 references
    optimal control
    0 references
    pointwise control
    0 references
    parabolic problems
    0 references
    finite elements
    0 references
    discontinuous Galerkin method
    0 references
    error estimates
    0 references
    0 references
    0 references
    0 references
    0 references
    A priori error estimates for three dimensional parabolic optimal control problems with pointwise control (English)
    0 references
    The paper deals with a parabolic optimal control problem NEWLINE\[NEWLINE\begin{aligned} &\min_{q,u} J(q,u):=\frac 12 \int_0^T \|u(t)-\hat u\|^2_{L^2(\Omega)}\,dt+\frac \alpha 2\int_0^T|q(t)|^2\,dt,\\ &\text{subject to} \\ & u_t(t,x)-\Delta u(t,x)=q(t)\delta_{x_0}(x),\;(t,x)\in I\times \Omega, \\ &u(t,x)=0,\;,\;(t,x)\in I\times \partial\Omega,\;u(0,x)=0,\;x\in \Omega\subset \mathbb{R}^3, \\ &q_a\leq q(t)\leq q_b\;\text{a.e. in}\;I \end{aligned}NEWLINE\]NEWLINE with the Dirac delta function \(\delta_{x_0},\;x_0\in \Omega\). The problem is approximated using standard continuous linear finite elements in space and the piecewise constant discontinuous Galerkin method in time. Despite low regularity of the state equation, the authors establish a \(\mathcal{O}(\sqrt k+h)\) convergence rate for the control in the \(L^2\)-norm. The result improves the previously known estimate and does not require any relationship between the time step \(k\) and the mesh step \(h\).
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references