A priori error estimates for three dimensional parabolic optimal control problems with pointwise control (Q2821804)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Priori Error Estimates for Three Dimensional Parabolic Optimal Control Problems with Pointwise Control |
scientific article; zbMATH DE number 6629379
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A priori error estimates for three dimensional parabolic optimal control problems with pointwise control |
scientific article; zbMATH DE number 6629379 |
Statements
23 September 2016
0 references
optimal control
0 references
pointwise control
0 references
parabolic problems
0 references
finite elements
0 references
discontinuous Galerkin method
0 references
error estimates
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
A priori error estimates for three dimensional parabolic optimal control problems with pointwise control (English)
0 references
The paper deals with a parabolic optimal control problem NEWLINE\[NEWLINE\begin{aligned} &\min_{q,u} J(q,u):=\frac 12 \int_0^T \|u(t)-\hat u\|^2_{L^2(\Omega)}\,dt+\frac \alpha 2\int_0^T|q(t)|^2\,dt,\\ &\text{subject to} \\ & u_t(t,x)-\Delta u(t,x)=q(t)\delta_{x_0}(x),\;(t,x)\in I\times \Omega, \\ &u(t,x)=0,\;,\;(t,x)\in I\times \partial\Omega,\;u(0,x)=0,\;x\in \Omega\subset \mathbb{R}^3, \\ &q_a\leq q(t)\leq q_b\;\text{a.e. in}\;I \end{aligned}NEWLINE\]NEWLINE with the Dirac delta function \(\delta_{x_0},\;x_0\in \Omega\). The problem is approximated using standard continuous linear finite elements in space and the piecewise constant discontinuous Galerkin method in time. Despite low regularity of the state equation, the authors establish a \(\mathcal{O}(\sqrt k+h)\) convergence rate for the control in the \(L^2\)-norm. The result improves the previously known estimate and does not require any relationship between the time step \(k\) and the mesh step \(h\).
0 references