Double eta polynomials and equivariant Giambelli formulas (Q2822145)

From MaRDI portal





scientific article; zbMATH DE number 6630160
Language Label Description Also known as
English
Double eta polynomials and equivariant Giambelli formulas
scientific article; zbMATH DE number 6630160

    Statements

    Double eta polynomials and equivariant Giambelli formulas (English)
    0 references
    0 references
    27 September 2016
    0 references
    Eta polynomials
    0 references
    double eta polynomials
    0 references
    Giambelli polynomials
    0 references
    Young raising operators
    0 references
    Schubert calculus
    0 references
    equivariant cohomology
    0 references
    Let \(k\) be a positive integer and \(OG = OG(n-k, 2n)\) be the Grassmannian that parametrizes isotropic subspaces of dimension \(n-k\) in the vector space \(\mathbb C^{2n}\), equipped with an orthogonal form. The eta polynomials \(H_{\lambda}(c)\) of Buch, Kresch, and the author are Giambelli polynomials that represent the Schubert classes in the cohomology ring of \(OG\).NEWLINENEWLINEIn this paper using Young raising operators the author defines double eta polynomials \(H_{\lambda}(c|t)\), which represent the equivariant Schubert classes in the equivariant cohomology ring \({H^\ast}_T (OG)\), where \(T\) is a maximal torus of the complex even orthogonal group.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references