Double eta polynomials and equivariant Giambelli formulas (Q2822145)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Double eta polynomials and equivariant Giambelli formulas |
scientific article; zbMATH DE number 6630160
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Double eta polynomials and equivariant Giambelli formulas |
scientific article; zbMATH DE number 6630160 |
Statements
Double eta polynomials and equivariant Giambelli formulas (English)
0 references
27 September 2016
0 references
Eta polynomials
0 references
double eta polynomials
0 references
Giambelli polynomials
0 references
Young raising operators
0 references
Schubert calculus
0 references
equivariant cohomology
0 references
0 references
Let \(k\) be a positive integer and \(OG = OG(n-k, 2n)\) be the Grassmannian that parametrizes isotropic subspaces of dimension \(n-k\) in the vector space \(\mathbb C^{2n}\), equipped with an orthogonal form. The eta polynomials \(H_{\lambda}(c)\) of Buch, Kresch, and the author are Giambelli polynomials that represent the Schubert classes in the cohomology ring of \(OG\).NEWLINENEWLINEIn this paper using Young raising operators the author defines double eta polynomials \(H_{\lambda}(c|t)\), which represent the equivariant Schubert classes in the equivariant cohomology ring \({H^\ast}_T (OG)\), where \(T\) is a maximal torus of the complex even orthogonal group.
0 references