Abelian subalgebras and the Jordan structure of a von Neumann algebra (Q2822577)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Abelian subalgebras and the Jordan structure of a von Neumann algebra |
scientific article; zbMATH DE number 6632094
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Abelian subalgebras and the Jordan structure of a von Neumann algebra |
scientific article; zbMATH DE number 6632094 |
Statements
30 September 2016
0 references
von Neumann algebra
0 references
Jordan structure
0 references
abelian subalgebra
0 references
orthomodular lattice
0 references
math-ph
0 references
math.MP
0 references
math.OA
0 references
quant-ph
0 references
Abelian subalgebras and the Jordan structure of a von Neumann algebra (English)
0 references
Let \(M\) be a von Neumann algebra. Denote by \(\operatorname{AbSub}M\) the partially ordered set (poset) of all abelian von Neumann subalgebras of \(M\). The main aim of the paper is to show that the order structure of the orthomodular lattice \(\operatorname{AbSub}M\) determines the Jordan structure of the von Neumann algebra \(M\). Namely, the authors prove the following result:NEWLINENEWLINEIf \(M\) and \(N\) are von Neumann algebras not isomorphic to \(\mathbb C \oplus \mathbb C\) and without type \(I_{2}\) summands, then for an order-isomorphism \(f: \operatorname{AbSub}M\rightarrow \operatorname{AbSub}N \) between the posets of abelian subalgebras of \(M\) and \(N\), there is a unique Jordan \(*\)-isomorphism \(g:M\rightarrow N\) with the image \(g[S]\) equal to \(f(S)\) for each abelian von Neumann subalgebra \(S\) of \(M\).
0 references