Abelian subalgebras and the Jordan structure of a von Neumann algebra (Q2822577)

From MaRDI portal





scientific article; zbMATH DE number 6632094
Language Label Description Also known as
English
Abelian subalgebras and the Jordan structure of a von Neumann algebra
scientific article; zbMATH DE number 6632094

    Statements

    0 references
    0 references
    30 September 2016
    0 references
    von Neumann algebra
    0 references
    Jordan structure
    0 references
    abelian subalgebra
    0 references
    orthomodular lattice
    0 references
    math-ph
    0 references
    math.MP
    0 references
    math.OA
    0 references
    quant-ph
    0 references
    Abelian subalgebras and the Jordan structure of a von Neumann algebra (English)
    0 references
    Let \(M\) be a von Neumann algebra. Denote by \(\operatorname{AbSub}M\) the partially ordered set (poset) of all abelian von Neumann subalgebras of \(M\). The main aim of the paper is to show that the order structure of the orthomodular lattice \(\operatorname{AbSub}M\) determines the Jordan structure of the von Neumann algebra \(M\). Namely, the authors prove the following result:NEWLINENEWLINEIf \(M\) and \(N\) are von Neumann algebras not isomorphic to \(\mathbb C \oplus \mathbb C\) and without type \(I_{2}\) summands, then for an order-isomorphism \(f: \operatorname{AbSub}M\rightarrow \operatorname{AbSub}N \) between the posets of abelian subalgebras of \(M\) and \(N\), there is a unique Jordan \(*\)-isomorphism \(g:M\rightarrow N\) with the image \(g[S]\) equal to \(f(S)\) for each abelian von Neumann subalgebra \(S\) of \(M\).
    0 references
    0 references

    Identifiers