Dedekind domains and Dedekind modules (Q2826322)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Dedekind domains and Dedekind modules |
scientific article; zbMATH DE number 6639510
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Dedekind domains and Dedekind modules |
scientific article; zbMATH DE number 6639510 |
Statements
14 October 2016
0 references
Dedekind modules
0 references
uniform modules
0 references
Dedekind domains
0 references
Dedekind domains and Dedekind modules (English)
0 references
If \(R\) is a commutative ring, then an \(R\)-module is said to be a Dedekind module if all its non-zero submodules are invertible [\textit{A. G. Naoum} and \textit{F. H. Al-Alwan}, Commun. Algebra 24, No. 2, 397--412 (1996; Zbl 0858.13008)]. The authors show that an integral domain \(R\) is Dedekind if and only if every torsion-free finitely generated uniform \(R\)-module is a Dedekind module.
0 references