Dedekind domains and Dedekind modules (Q2826322)

From MaRDI portal





scientific article; zbMATH DE number 6639510
Language Label Description Also known as
English
Dedekind domains and Dedekind modules
scientific article; zbMATH DE number 6639510

    Statements

    0 references
    0 references
    0 references
    14 October 2016
    0 references
    Dedekind modules
    0 references
    uniform modules
    0 references
    Dedekind domains
    0 references
    Dedekind domains and Dedekind modules (English)
    0 references
    If \(R\) is a commutative ring, then an \(R\)-module is said to be a Dedekind module if all its non-zero submodules are invertible [\textit{A. G. Naoum} and \textit{F. H. Al-Alwan}, Commun. Algebra 24, No. 2, 397--412 (1996; Zbl 0858.13008)]. The authors show that an integral domain \(R\) is Dedekind if and only if every torsion-free finitely generated uniform \(R\)-module is a Dedekind module.
    0 references

    Identifiers