Asymptotic Bohr radius for the polynomials in one complex variable (Q2827659)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic Bohr radius for the polynomials in one complex variable |
scientific article; zbMATH DE number 6641696
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic Bohr radius for the polynomials in one complex variable |
scientific article; zbMATH DE number 6641696 |
Statements
Asymptotic Bohr radius for the polynomials in one complex variable (English)
0 references
20 October 2016
0 references
Bohr radius
0 references
polynomials
0 references
0.9578927
0 references
0.94662535
0 references
0.9156367
0 references
0.8768279
0 references
0.8755338
0 references
0.87492484
0 references
0.87263507
0 references
0.8630384
0 references
0.8590424
0 references
Let \(\mathbb{D}\) be the open unit disk in the complex plane \(\mathbb{C}\). Let \(H^{\infty}\) be the Banach space of bounded analytic functions on \(\mathbb{D}\) with the norm \(\|f\|_{\infty}=\sup_{z\in \mathbb{D}}|f(z)|\). Let \(\mathcal{P}_n\) denote the subspace of \(H^{\infty}\) consisting of all complex polynomials of degree at most \(n\). The Bohr-type radius \(R_n\) for the class \(\mathcal{P}_n\) is defined by NEWLINE\[NEWLINER_n= \sup\bigg\{r\in (0, 1): \sum_{k=0}^{\infty}|a_k|r^k\leq \|p\|_{\infty}, \;\;\text{for all} \;\;p(z)=\sum_{k=0}^{n}a_k z^k \in \mathcal{P}_n\bigg\}.NEWLINE\]NEWLINE Based on numerical evidence, \textit{R. Fournier} [J. Math. Anal. Appl. 338, No. 2, 1100--1107 (2008; Zbl 1155.30002)] conjectured that NEWLINE\[NEWLINER_n= \frac{1}{3} + \frac{\pi^2}{3n^2}+ o\Big(\frac{1}{n^2}\Big).NEWLINE\]NEWLINE In the paper under review, the author proves that this conjecture is true. In fact, the author proves that NEWLINE\[NEWLINE\lim_{n\rightarrow\infty} n^2 \Big(R_n -\frac{1}{3}\Big) =\frac{\pi^2}{3}.NEWLINE\]NEWLINENEWLINENEWLINEFor the entire collection see [Zbl 1318.47003].
0 references