On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) (Q2828359)

From MaRDI portal





scientific article; zbMATH DE number 6643141
Language Label Description Also known as
English
On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\)
scientific article; zbMATH DE number 6643141

    Statements

    0 references
    25 October 2016
    0 references
    cubic theta functions
    0 references
    modular forms
    0 references
    quaternary form
    0 references
    representation of integers
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) (English)
    0 references
    Let \(R(n)\) be a number of the integer representations of \(n\) by the quaternary quadratic form \(x^2+xy+7y^2+z^2+zt+7t^2\). Then NEWLINE\[NEWLINER(n)=\frac{4}{3}\sigma(n)-\frac{16}{3}\sigma(n/3)+16\sigma(n/9)-36\sigma(n/27)+\frac{8}{3}c(n),NEWLINE\]NEWLINE where \(\sigma(n)=\sum_{d|n} d\) and \(c(n)\) is given by NEWLINE\[NEWLINEq\prod_{j=1}^{\infty} (1-q^{3j})^2(1-q^{9j})^2=\sum_{n=0}^{\infty} c(n)q^n.NEWLINE\]
    0 references
    0 references

    Identifiers