On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) (Q2828359)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) |
scientific article; zbMATH DE number 6643141
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) |
scientific article; zbMATH DE number 6643141 |
Statements
25 October 2016
0 references
cubic theta functions
0 references
modular forms
0 references
quaternary form
0 references
representation of integers
0 references
On the quaternary form \(x^2+xy+7y^2+z^2+zt+7t^2\) (English)
0 references
Let \(R(n)\) be a number of the integer representations of \(n\) by the quaternary quadratic form \(x^2+xy+7y^2+z^2+zt+7t^2\). Then NEWLINE\[NEWLINER(n)=\frac{4}{3}\sigma(n)-\frac{16}{3}\sigma(n/3)+16\sigma(n/9)-36\sigma(n/27)+\frac{8}{3}c(n),NEWLINE\]NEWLINE where \(\sigma(n)=\sum_{d|n} d\) and \(c(n)\) is given by NEWLINE\[NEWLINEq\prod_{j=1}^{\infty} (1-q^{3j})^2(1-q^{9j})^2=\sum_{n=0}^{\infty} c(n)q^n.NEWLINE\]
0 references