The \(k\)-ordinary generalized geometric-arithmetic index (Q2831599)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The \(k\)-ordinary generalized geometric-arithmetic index |
scientific article; zbMATH DE number 6651235
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \(k\)-ordinary generalized geometric-arithmetic index |
scientific article; zbMATH DE number 6651235 |
Statements
10 November 2016
0 references
geometric-arithmetic index
0 references
lower and upper bounds
0 references
connected graph
0 references
The \(k\)-ordinary generalized geometric-arithmetic index (English)
0 references
When, in a simple, connected graph \(G=(V,E)\), with \(|V|=n\) and \(|E|=m\), \(e=uv=vu\in E\), \(n_u(e)\) is defined to be \(|\{x\in V:d(x,u)<d(x,v)\}|\). For any real number \(k>0\), the authors define the \(k\)-ordinary geometric-arithmetic index, \(\operatorname{ORGA}_k(G)=\sum\limits_{uv\in E}\left[\frac{\sqrt{4n_u(e)\cdot n_v(e)}}{n_u(e)+n_v(e)}\right]\), to generalize the second geometric-arithmetic index of \textit{G. Fath-Tabar} et al. [J. Math. Chem. 47, No. 1, 477--486 (2010; Zbl 1197.92056)]. They determine properties, including lower and upper bounds, in terms of other graph invariants and ``topological indices'', for the purpose of applications in quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research.
0 references