The \(k\)-ordinary generalized geometric-arithmetic index (Q2831599)

From MaRDI portal





scientific article; zbMATH DE number 6651235
Language Label Description Also known as
English
The \(k\)-ordinary generalized geometric-arithmetic index
scientific article; zbMATH DE number 6651235

    Statements

    0 references
    0 references
    0 references
    10 November 2016
    0 references
    geometric-arithmetic index
    0 references
    lower and upper bounds
    0 references
    connected graph
    0 references
    The \(k\)-ordinary generalized geometric-arithmetic index (English)
    0 references
    When, in a simple, connected graph \(G=(V,E)\), with \(|V|=n\) and \(|E|=m\), \(e=uv=vu\in E\), \(n_u(e)\) is defined to be \(|\{x\in V:d(x,u)<d(x,v)\}|\). For any real number \(k>0\), the authors define the \(k\)-ordinary geometric-arithmetic index, \(\operatorname{ORGA}_k(G)=\sum\limits_{uv\in E}\left[\frac{\sqrt{4n_u(e)\cdot n_v(e)}}{n_u(e)+n_v(e)}\right]\), to generalize the second geometric-arithmetic index of \textit{G. Fath-Tabar} et al. [J. Math. Chem. 47, No. 1, 477--486 (2010; Zbl 1197.92056)]. They determine properties, including lower and upper bounds, in terms of other graph invariants and ``topological indices'', for the purpose of applications in quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references