Zeros of Ramanujan type entire functions (Q2832824)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Zeros of Ramanujan type entire functions |
scientific article; zbMATH DE number 6652860
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Zeros of Ramanujan type entire functions |
scientific article; zbMATH DE number 6652860 |
Statements
Zeros of Ramanujan type entire functions (English)
0 references
14 November 2016
0 references
entire functions
0 references
polynomials
0 references
zeros
0 references
Ramanujan entire function
0 references
Stieltjes-Wigert polynomial
0 references
In [``\(q\)-Bessel functions and Rogers-Ramanujan type identities'', Preprint, \url{arXiv:1508.06861}], \textit{M. E. H. Ismail} and the author introduced the class of entire functions NEWLINE\[NEWLINE A_q^{(\alpha)}(a;z)=\sum_{n=0}^\infty \frac{(a;q)_nq^{\alpha n^2} z^n}{(q;q)_n},NEWLINE\]NEWLINE where \(\alpha>0\), \(0<q<1\), \( (a;q)_n=\prod_{k=0}^{n-1} (1-aq^k)\). This is a generalization of both the Ramanujan entire function and the Stieltjes-Wigert polynomial. The author studies the zero distribution of the functions \(A_q^{(\alpha)}\). It particular, it is proved that: NEWLINENEWLINENEWLINE 1) The polynomial \(A^{(\alpha)}_q (q^{-n};x)\) has only positive zeros, for all \(n\in \mathbb{N}\), \(0<q<1\), and \(\alpha\geq 0\).NEWLINENEWLINE2) The entire function \(A^{(\alpha)}_q (-a;z)\) has infinitely many zeros and all them are negative, for all \(0<q<1\), \(\alpha> 0\).
0 references