Zeros of Ramanujan type entire functions (Q2832824)

From MaRDI portal





scientific article; zbMATH DE number 6652860
Language Label Description Also known as
English
Zeros of Ramanujan type entire functions
scientific article; zbMATH DE number 6652860

    Statements

    Zeros of Ramanujan type entire functions (English)
    0 references
    0 references
    14 November 2016
    0 references
    entire functions
    0 references
    polynomials
    0 references
    zeros
    0 references
    Ramanujan entire function
    0 references
    Stieltjes-Wigert polynomial
    0 references
    In [``\(q\)-Bessel functions and Rogers-Ramanujan type identities'', Preprint, \url{arXiv:1508.06861}], \textit{M. E. H. Ismail} and the author introduced the class of entire functions NEWLINE\[NEWLINE A_q^{(\alpha)}(a;z)=\sum_{n=0}^\infty \frac{(a;q)_nq^{\alpha n^2} z^n}{(q;q)_n},NEWLINE\]NEWLINE where \(\alpha>0\), \(0<q<1\), \( (a;q)_n=\prod_{k=0}^{n-1} (1-aq^k)\). This is a generalization of both the Ramanujan entire function and the Stieltjes-Wigert polynomial. The author studies the zero distribution of the functions \(A_q^{(\alpha)}\). It particular, it is proved that: NEWLINENEWLINENEWLINE 1) The polynomial \(A^{(\alpha)}_q (q^{-n};x)\) has only positive zeros, for all \(n\in \mathbb{N}\), \(0<q<1\), and \(\alpha\geq 0\).NEWLINENEWLINE2) The entire function \(A^{(\alpha)}_q (-a;z)\) has infinitely many zeros and all them are negative, for all \(0<q<1\), \(\alpha> 0\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references