An explicit upper bound for \(|L(1,\chi)|\) when \(\chi(2)=1\) and \(\chi\) is even (Q2833096)

From MaRDI portal





scientific article; zbMATH DE number 6653584
Language Label Description Also known as
English
An explicit upper bound for \(|L(1,\chi)|\) when \(\chi(2)=1\) and \(\chi\) is even
scientific article; zbMATH DE number 6653584

    Statements

    0 references
    16 November 2016
    0 references
    \(L\)-functions
    0 references
    Dirichlet character
    0 references
    quadratic field
    0 references
    Gauss sums
    0 references
    An explicit upper bound for \(|L(1,\chi)|\) when \(\chi(2)=1\) and \(\chi\) is even (English)
    0 references
    Let \(\chi\) be an even, primitive Dirichlet character of conductor \(q > 1\), such that \(\chi(2) = 1\). The main result of the paper states that: NEWLINENEWLINENEWLINE\[NEWLINE| L(1, \chi)| \leq \frac{1}{2} \log q - 0.02012.NEWLINE\]NEWLINE NEWLINENEWLINENEWLINEA second result provides an upper bound for the class number of a real quadratic field of discriminant \(q > 1\), such that \(\chi(2) = 1\), namely: NEWLINE\[NEWLINEh(\mathbb Q(\sqrt{q})) \leq\frac{\sqrt{q}}{2}\left(1- \frac{1}{25 \log q}\right).NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references