Stable pair invariants of surfaces and Seiberg-Witten invariants (Q2833453)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stable pair invariants of surfaces and Seiberg-Witten invariants |
scientific article; zbMATH DE number 6654442
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stable pair invariants of surfaces and Seiberg-Witten invariants |
scientific article; zbMATH DE number 6654442 |
Statements
18 November 2016
0 references
stable pair invariants
0 references
virtual localization
0 references
Hilbert scheme
0 references
GW/PT correspondence
0 references
equivariant cohomology
0 references
Stable pair invariants of surfaces and Seiberg-Witten invariants (English)
0 references
Let \(S\) be a smooth projective surface and \(\beta \in H_{2}(S)\). The author shows that for such \(S\), \(\beta\) and \(m:=\beta(\beta -k)/2\), NEWLINE\[NEWLINEZ^{P}_{\beta}(S,\tau_{0}(\mathrm{pt})^{m})=t^{m}P_{S}(\beta)(q^{1/2}+q^{-1/2})^{2h-2} NEWLINE\]NEWLINE where \(t\) is the equivariant parameter, \(2h-2=\beta (\beta+k)\), \(P_{S}(\beta) \in \mathbb{Z}\) is the numerical part of the Poincaré invariant \(P^{+}_{S}(\beta)\) of Dürr-Kabanov-Okonek [\textit{M. Dürr} et al., Topology 46, No. 3, 225--294 (2007; Zbl 1120.14034)], and \(\tau_{0}(\mathrm{pt})\) is the primary point insertion. Here \(Z^{P}_{\beta}\) is a generating function of stable pair invariants. The author also includes series of applications of this main result.
0 references