Stable pair invariants of surfaces and Seiberg-Witten invariants (Q2833453)

From MaRDI portal





scientific article; zbMATH DE number 6654442
Language Label Description Also known as
English
Stable pair invariants of surfaces and Seiberg-Witten invariants
scientific article; zbMATH DE number 6654442

    Statements

    0 references
    18 November 2016
    0 references
    stable pair invariants
    0 references
    virtual localization
    0 references
    Hilbert scheme
    0 references
    GW/PT correspondence
    0 references
    equivariant cohomology
    0 references
    Stable pair invariants of surfaces and Seiberg-Witten invariants (English)
    0 references
    Let \(S\) be a smooth projective surface and \(\beta \in H_{2}(S)\). The author shows that for such \(S\), \(\beta\) and \(m:=\beta(\beta -k)/2\), NEWLINE\[NEWLINEZ^{P}_{\beta}(S,\tau_{0}(\mathrm{pt})^{m})=t^{m}P_{S}(\beta)(q^{1/2}+q^{-1/2})^{2h-2} NEWLINE\]NEWLINE where \(t\) is the equivariant parameter, \(2h-2=\beta (\beta+k)\), \(P_{S}(\beta) \in \mathbb{Z}\) is the numerical part of the Poincaré invariant \(P^{+}_{S}(\beta)\) of Dürr-Kabanov-Okonek [\textit{M. Dürr} et al., Topology 46, No. 3, 225--294 (2007; Zbl 1120.14034)], and \(\tau_{0}(\mathrm{pt})\) is the primary point insertion. Here \(Z^{P}_{\beta}\) is a generating function of stable pair invariants. The author also includes series of applications of this main result.
    0 references

    Identifiers