Ricci almost solitons satisfying certain conditions on the potential vector field (Q2834175)

From MaRDI portal





scientific article; zbMATH DE number 6656671
Language Label Description Also known as
English
Ricci almost solitons satisfying certain conditions on the potential vector field
scientific article; zbMATH DE number 6656671

    Statements

    Ricci almost solitons satisfying certain conditions on the potential vector field (English)
    0 references
    0 references
    25 November 2016
    0 references
    Ricci almost soliton
    0 references
    infinitesimal harmonic transformation
    0 references
    rough Laplacian
    0 references
    integral inequalities
    0 references
    A Riemannian manifold \((M,g)\) is called a Ricci almost soliton if there exist a complete vector field \(V\) and a smooth function \(\lambda\) such that \({\mathcal L}_Vg+2S=2\lambda g\), where \(S\) is the Ricci tensor and \({\mathcal L}_V\) denotes the Lie derivative in the direction of \(V\). The main results are the following.NEWLINENEWLINE Theorem. Let \((M^n,g,V)\), \(n\geq3\), be a Ricci almost soliton. Then \(g\) is a Ricci soliton if and only if \(V\) is an infinitesimal harmonic transformation.NEWLINENEWLINE Theorem. Let \((M^n,g,V)\), \(n\geq2\), be a compact Ricci almost soliton with \(V\neq0\). If it satisfies NEWLINE\[NEWLINE\int_M\{2S(V,V)+(n-2)g(D\lambda,V)\}dM\leq0,NEWLINE\]NEWLINE where \(D\lambda\) denotes the gradient of \(\lambda\), then the 1-form associated to \(V\) is harmonic and \(M\) is Ricci flat.NEWLINENEWLINE Theorem. Let \((M^n,g,V)\), \(n>2\), be a compact Ricci almost soliton with \(V\neq0\). If it satisfies NEWLINE\[NEWLINE\int_M\{g(\Delta V,V)+(n-2)g(D\lambda,V)\}dM\leq0,NEWLINE\]NEWLINE where \(\Delta V\) denotes the Laplacian of \(V\), then \(M\) is Ricci flat.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references