Distances between homotopy classes of \(W^{s,p}(\mathbb{S}^N;\mathbb{S}^N)^\ast\) (Q2835357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Distances between homotopy classes of \(W^{s,p}(\mathbb{S}^N;\mathbb{S}^N)^\ast\) |
scientific article; zbMATH DE number 6659049
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Distances between homotopy classes of \(W^{s,p}(\mathbb{S}^N;\mathbb{S}^N)^\ast\) |
scientific article; zbMATH DE number 6659049 |
Statements
2 December 2016
0 references
Sobolev spaces
0 references
degree
0 references
sphere-valued mappings
0 references
homotopy classes
0 references
0 references
0 references
0 references
0.9201664
0 references
0.9101568
0 references
0 references
0 references
0.8615578
0 references
0 references
0.8522416
0 references
Distances between homotopy classes of \(W^{s,p}(\mathbb{S}^N;\mathbb{S}^N)^\ast\) (English)
0 references
The article deals with homotopy classes of discontinuous maps in \({\mathbb S}^N\). As is known, for a discontinuous map \(f:\;{\mathbb S}^N \to {\mathbb S}^N\) the degree is defined by Kronecker's formula NEWLINE\[NEWLINE\text{deg}\, f = \int_{{\mathbb S}^N} \text{det}\, (\nabla f).NEWLINE\]NEWLINE This definition is correct only under some assumptions about the character of gaps of \(f\); in the article the considered maps are from \(W^{s,p}({\mathbb S}^N,{\mathbb S}^N)\). More precisely, the following classes of maps from \(W^{s,p}({\mathbb S}^N,{\mathbb S}^N)\) are studied: NEWLINE\[NEWLINE{\mathcal E}_d := \{f \in W^{s,p} \in W^{s,p}({\mathbb S}^N,{\mathbb S}^N):\;\text{deg}\, f = d\}, \quad d \in {\mathbb Z}.NEWLINE\]NEWLINE The main aim of the article is to calculate or estimate the two quantities NEWLINE\[NEWLINE\text{dist}_{W^{s,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2}) = \inf_{f \in {\mathcal E}_{d_1}} \inf_{g \in {\mathcal E}_{d_2}}\;d_{W^{s,p}}(f,g)NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\text{Dist}_{W^{s,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2}) = \sup_{f \in {\mathcal E}_{d_1}} \inf_{g \in {\mathcal E}_{d_2}}\;d_{W^{s,p}} (f,g)NEWLINE\]NEWLINE (\(d_{W^{s,p}}(f,g) = \|f - g\|_{W^{s,p}}\)) and also the Hausdorff distance \(H\text{-}\,\text{dist}_{W^{1/p,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2})\). For \(N = 1\), it is proved (1) the formula NEWLINE\[NEWLINE\text{dist}_{W^{1,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2}) = 2^{(1/p)+1} \pi^{(1/p)-1} |d_1 - d_2|, \quad d_1, d_2 \in {\mathbb Z},NEWLINE\]NEWLINE and it is described when this infimum is achieved or not, (2) some estimates for \(\text{dist}_{W^{s,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2})\) with \(s > 1\) and, in particular, the equality \(\text{dist}_{W^{1/p,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2}) = 0\), (3) similar statements for the Hausdorff distance between \({\mathcal E}_{d_1}\) and \({\mathcal E}_{d_2}\). Similar results are obtained for \(N \geq 2\). The authors also state three open problems, in particular, the question about the equality \(\text{dist}_{W^{s,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2}) = \text{Dist}_{W^{s,p}}({\mathcal E}_{d_1},{\mathcal E}_{d_2})\).
0 references