Hexahedral \(\mathbf H(\operatorname{div})\) and \(\mathbf H(\operatorname{curl})\) finite elements (Q2836470)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hexahedral \(\mathbf H(\operatorname{div})\) and \(\mathbf H(\operatorname{curl})\) finite elements |
scientific article; zbMATH DE number 6183197
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hexahedral \(\mathbf H(\operatorname{div})\) and \(\mathbf H(\operatorname{curl})\) finite elements |
scientific article; zbMATH DE number 6183197 |
Statements
3 July 2013
0 references
hexahedral finite element spaces
0 references
\(\mathbf H(\operatorname{div}
0 references
\Omega)\)
0 references
\(\mathbf H(\operatorname{curl}
0 references
0.89986247
0 references
0.8795641
0 references
0.8685669
0 references
0.8669393
0 references
0.8636649
0 references
0.86313856
0 references
0.86039466
0 references
0.8587837
0 references
0.85782915
0 references
Hexahedral \(\mathbf H(\operatorname{div})\) and \(\mathbf H(\operatorname{curl})\) finite elements (English)
0 references
The authors study the approximation properties of some finite element subspaces of \(\mathbf H(\operatorname{div};\Omega)\) and \(\mathbf H(\operatorname{curl};\Omega)\) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral \(\mathbf H(\operatorname{div};\Omega)\) finite elements and for quadrilateral scalar finite element spaces. The considered finite element spaces are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to ensure \(\mathcal O(h)\) approximation in \(L^2(\Omega)\) and in \(\mathbf H(\operatorname{div};\Omega)\) and \(\mathbf H(\operatorname{curl};\Omega)\) on the physical element, the authors study the properties of the resulting finite element spaces.
0 references