A lower estimate for first Neumann eigenvalue of compact manifolds (Q2837913)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A lower estimate for first Neumann eigenvalue of compact manifolds |
scientific article; zbMATH DE number 6184903
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A lower estimate for first Neumann eigenvalue of compact manifolds |
scientific article; zbMATH DE number 6184903 |
Statements
8 July 2013
0 references
Neumann eigenvalue
0 references
energy density
0 references
sectional curvature
0 references
Ricci curvature
0 references
A lower estimate for first Neumann eigenvalue of compact manifolds (English)
0 references
Let \(\lambda_1\) be the first Neumann eigenvalue of a compact Riemannian manifold \(M\) of dimension \(m\). The authors assume that the Ricci curvature satisfies the estimate \(\mathrm{Ric}(M)\geq-(n-1)K\) and that the boundary of \(M\) is convex, i.e. the second fundamental form with respect to the outward normal vector field is positive definite. Let \(d\) be the diameter of \(M\).NEWLINENEWLINENEWLINEThe authors show NEWLINE\[NEWLINE\lambda_1\geq{1\over{2(n-1)d^2}}\exp\{-1-\sqrt{1+2(n-1)^2d^2K}\}\,.NEWLINE\]NEWLINE This improves earlier estimates due to \textit{S.-T. Yau} [Ann. Sci. Éc. Norm. Supér. (4) 8, 487--507 (1975; Zbl 0325.53039)] and \textit{P. Li} and \textit{S.-T. Yau} [Proc. Symp. Pure Math., Vol. 36, 205--239 (1980; Zbl 0441.58014)].
0 references