A lower estimate for first Neumann eigenvalue of compact manifolds (Q2837913)

From MaRDI portal





scientific article; zbMATH DE number 6184903
Language Label Description Also known as
English
A lower estimate for first Neumann eigenvalue of compact manifolds
scientific article; zbMATH DE number 6184903

    Statements

    0 references
    0 references
    8 July 2013
    0 references
    Neumann eigenvalue
    0 references
    energy density
    0 references
    sectional curvature
    0 references
    Ricci curvature
    0 references
    A lower estimate for first Neumann eigenvalue of compact manifolds (English)
    0 references
    Let \(\lambda_1\) be the first Neumann eigenvalue of a compact Riemannian manifold \(M\) of dimension \(m\). The authors assume that the Ricci curvature satisfies the estimate \(\mathrm{Ric}(M)\geq-(n-1)K\) and that the boundary of \(M\) is convex, i.e. the second fundamental form with respect to the outward normal vector field is positive definite. Let \(d\) be the diameter of \(M\).NEWLINENEWLINENEWLINEThe authors show NEWLINE\[NEWLINE\lambda_1\geq{1\over{2(n-1)d^2}}\exp\{-1-\sqrt{1+2(n-1)^2d^2K}\}\,.NEWLINE\]NEWLINE This improves earlier estimates due to \textit{S.-T. Yau} [Ann. Sci. Éc. Norm. Supér. (4) 8, 487--507 (1975; Zbl 0325.53039)] and \textit{P. Li} and \textit{S.-T. Yau} [Proc. Symp. Pure Math., Vol. 36, 205--239 (1980; Zbl 0441.58014)].
    0 references

    Identifiers