On R. Chapman's ``evil determinant'': case \(p\equiv 1\pmod 4\) (Q2839287)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On R. Chapman's ``evil determinant: case \(p\equiv 1\pmod 4\) |
scientific article; zbMATH DE number 6184260
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On R. Chapman's ``evil determinant'': case \(p\equiv 1\pmod 4\) |
scientific article; zbMATH DE number 6184260 |
Statements
4 July 2013
0 references
Legendre symbol
0 references
determinant
0 references
Cauchy determinant
0 references
Dirichlet's class number formula
0 references
On R. Chapman's ``evil determinant'': case \(p\equiv 1\pmod 4\) (English)
0 references
Let \(p\) be a prime number and let \(\left(\frac \cdot p\right)\) denote the Legrendre symbol. Among others, \textit{R. Chapman} [Acta Arith. 115, No. 3, 231--244 (2004; Zbl 1073.15006)] analyzed the determinant of the matrix \(C=\left[\left(\frac{j-i}p\right)\right]_{i,j=0,1,\ldots,(p-1)/2}\).NEWLINENEWLINE Recently, the author [Linear Algebra Appl. 436, No. 11, 4101--4106 (2012; Zbl 1317.11033)] proved that \(\det C=1\), for \(p\equiv 3\pmod 4\). Here, a similar approach is used to prove a formula for \(\det C\), conjectured also by \textit{R. Chapman} [``My evil determinant problem'', unpublished note (2009)], in terms of the fundamental unit and class number of \(\mathbb{Q}(\sqrt{p})\), for \(p\equiv 1\pmod 4\). Several expressions for parametric Cauchy-type determinants are evaluated and related to Dirichlet's class number formula for real quadratic fields.
0 references