A generalization of Rademacher's reciprocity law (Q2839289)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of Rademacher's reciprocity law |
scientific article; zbMATH DE number 6184262
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of Rademacher's reciprocity law |
scientific article; zbMATH DE number 6184262 |
Statements
A generalization of Rademacher's reciprocity law (English)
0 references
4 July 2013
0 references
Vasyunin sum
0 references
reciprocity formula
0 references
Riemann zeta-function
0 references
Dedekind sum
0 references
Let \(h/k\) be a rational number with \((h,k)=1\), \(k>1\), and let \(a\) be a complex number. Define NEWLINE\[NEWLINE c_{a}\left(\frac{h}{k}\right)=k^a\sum_{m=1}^{k-1}\cot\left(\frac{\pi hm}{k}\right)\zeta\left(-a,\frac{m}{k}\right), NEWLINE\]NEWLINE where \(\zeta(s,m/k)\) is the Hurwitz zeta-function. We have NEWLINE\[NEWLINE c_{-1}\left(\frac{h}{k}\right)=2\pi s\left(\frac{h}{k}\right), NEWLINE\]NEWLINE where \(s\left(\frac{h}{k}\right)\) is the Dedekind sum. This paper generalizes Rademacher's reciprocity formula for the Dedekind sum to \(c_{a}\left(\frac{h}{k}\right)\).
0 references