Extreme values of \(L\)-functions from the Selberg class (Q2840292)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extreme values of \(L\)-functions from the Selberg class |
scientific article; zbMATH DE number 6189002
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extreme values of \(L\)-functions from the Selberg class |
scientific article; zbMATH DE number 6189002 |
Statements
17 July 2013
0 references
extreme values
0 references
Omega theorem
0 references
Selberg class
0 references
\(L\)-function
0 references
0 references
Extreme values of \(L\)-functions from the Selberg class (English)
0 references
In this paper, the authors give conditional estimates for extreme values of \(L\)-functions from the Selberg class assuming the extended Riemann Hypothesis. These estimates extend \textit{H. L. Montgomery}'s results in the particular case of the Riemann zeta function [Comment. Math. Helv. 52, 511--518 (1977; Zbl 0373.10024)]. The proof relies on Montgomery's method together with an effective version of Kronecker's Diophantine approximation theorem due to \textit{M. Weber} [Unif. Distrib. Theory 4, No. 1, 97--116 (2009; Zbl 1208.11083)].
0 references