Genus fields of cyclic \(l\)-extensions of rational function fields (Q2840304)

From MaRDI portal





scientific article; zbMATH DE number 6189011
Language Label Description Also known as
English
Genus fields of cyclic \(l\)-extensions of rational function fields
scientific article; zbMATH DE number 6189011

    Statements

    17 July 2013
    0 references
    genus fields
    0 references
    congruence function fields
    0 references
    global fields
    0 references
    cyclotomic function fields
    0 references
    Kummer extensions
    0 references
    cyclic extensions
    0 references
    Genus fields of cyclic \(l\)-extensions of rational function fields (English)
    0 references
    Let \(k\) be the field of rational functions over the finite field \(F_q\), let \(l\) be a prime and assume \(l^n\mid q-1\). The authors describe the generators of the genus field of cyclic extensions \(K/k\) of degree \(l^n\). In the case \(n=1\) this was done by \textit{G. Peng} [J. Number Theory 98, No. 2, 221--227 (2003; Zbl 1049.11116)], and another proof was provided by \textit{M. Maldonaldo-Ramirez, M. Rzedowski-Calderón} and \textit{G. Villa-Salvador} [Finite Fields Appl. 20, 40--54 (2013; Zbl 1285.11140)].
    0 references

    Identifiers