Genus fields of cyclic \(l\)-extensions of rational function fields (Q2840304)
From MaRDI portal
| File:Ambox important.svg | This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Genus fields of cyclic \(l\)-extensions of rational function fields |
scientific article; zbMATH DE number 6189011
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Genus fields of cyclic \(l\)-extensions of rational function fields |
scientific article; zbMATH DE number 6189011 |
Statements
17 July 2013
0 references
genus fields
0 references
congruence function fields
0 references
global fields
0 references
cyclotomic function fields
0 references
Kummer extensions
0 references
cyclic extensions
0 references
0.94229174
0 references
0.9418726
0 references
0.93777204
0 references
0.9309007
0 references
0.91629696
0 references
0.91263443
0 references
0.9113197
0 references
0.9101064
0 references
Genus fields of cyclic \(l\)-extensions of rational function fields (English)
0 references
Let \(k\) be the field of rational functions over the finite field \(F_q\), let \(l\) be a prime and assume \(l^n\mid q-1\). The authors describe the generators of the genus field of cyclic extensions \(K/k\) of degree \(l^n\). In the case \(n=1\) this was done by \textit{G. Peng} [J. Number Theory 98, No. 2, 221--227 (2003; Zbl 1049.11116)], and another proof was provided by \textit{M. Maldonaldo-Ramirez, M. Rzedowski-Calderón} and \textit{G. Villa-Salvador} [Finite Fields Appl. 20, 40--54 (2013; Zbl 1285.11140)].
0 references