The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture (Q2840612)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture |
scientific article; zbMATH DE number 6190115
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture |
scientific article; zbMATH DE number 6190115 |
Statements
23 July 2013
0 references
BI-\(k\) degree rectangular element
0 references
highest-order superconvergence
0 references
element orthogonality analysis
0 references
correction function
0 references
tensor product
0 references
finite element
0 references
Poisson equation
0 references
0 references
0 references
0 references
0 references
The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture (English)
0 references
The authors use the element orthogonality analysis technique for proving the highest-order superconvergence \((u-u_h)(z)=\) \( {\mathcal{O}}(h^{2k}) | \text{ln}~ h |\) at nodes \(z\) for the BI-\(k\) rectangular finite element discretization for the Poisson equation on a rectangle.
0 references