The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture (Q2840612)

From MaRDI portal





scientific article; zbMATH DE number 6190115
Language Label Description Also known as
English
The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture
scientific article; zbMATH DE number 6190115

    Statements

    0 references
    0 references
    23 July 2013
    0 references
    BI-\(k\) degree rectangular element
    0 references
    highest-order superconvergence
    0 references
    element orthogonality analysis
    0 references
    correction function
    0 references
    tensor product
    0 references
    finite element
    0 references
    Poisson equation
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    The highest-order superconvergence for BI-\(k\) degree rectangular elements at nodes: a proof of \(2k\)-conjecture (English)
    0 references
    The authors use the element orthogonality analysis technique for proving the highest-order superconvergence \((u-u_h)(z)=\) \( {\mathcal{O}}(h^{2k}) | \text{ln}~ h |\) at nodes \(z\) for the BI-\(k\) rectangular finite element discretization for the Poisson equation on a rectangle.
    0 references

    Identifiers