Congruences for Andrews spt-function modulo powers of \(5, 7\) and \(13\) (Q2841373)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Congruences for Andrews spt-function modulo powers of \(5, 7\) and \(13\) |
scientific article; zbMATH DE number 6191432
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Congruences for Andrews spt-function modulo powers of \(5, 7\) and \(13\) |
scientific article; zbMATH DE number 6191432 |
Statements
25 July 2013
0 references
Andrews' spt-function
0 references
weak Maass form
0 references
congruence
0 references
partition
0 references
modular form
0 references
0 references
0 references
0 references
0.89401716
0 references
0.8863003
0 references
0.8846699
0 references
0.8800328
0 references
0.87065196
0 references
0.8698456
0 references
0.8577645
0 references
0.8573137
0 references
Congruences for Andrews spt-function modulo powers of \(5, 7\) and \(13\) (English)
0 references
Let \(\text{spt}(n)\) denote the number of smallest parts in the partitions of \(n\) and let \(\delta_{\ell,k}\) denote the least non-negative residue of \(24^{-1}\) modulo \(\ell^k\). The author shows that NEWLINE\[NEWLINE \begin{aligned} \text{spt}(5^a n + \delta_{5,a}) &\equiv 0 \pmod{5^{\lfloor \frac{a+1}{2} \rfloor}}, \\ \text{spt}(7^b n + \delta_{7,b}) &\equiv 0 \pmod{7^{\lfloor \frac{b+1}{2} \rfloor}}, \\ \text{spt}(13^c n + \delta_{13,c}) &\equiv 0 \pmod{13^{\lfloor \frac{c+1}{2} \rfloor}}. \end{aligned} NEWLINE\]NEWLINE These are reminiscent of the partition congruences NEWLINE\[NEWLINE \begin{aligned} p(5^a n + \delta_{5,a}) &\equiv 0 \pmod{5^a}, \\ p(7^b n + \delta_{7,b}) &\equiv 0 \pmod{7^{\lfloor \frac{b+2}{2} \rfloor}}, \\ p(11^c n + \delta_{11,c}) &\equiv 0 \pmod{11^c}. \end{aligned} NEWLINE\]NEWLINE Indeed, the proof of the congruences for \(\text{spt}(n)\) ultimately uses the method of modular equations which \textit{G. N. Watson} [J. Reine Angew. Math. 179, 97--128 (1938; Zbl 0019.15302)] and \textit{A.~O.~L. Atkin} [Glasg. Math. J. 8, 14--32 (1967; Zbl 0163.04302), Can. J. Math. 20, 67--78 (1968; Zbl 0164.35101)] used to prove the congruences for \(p(n)\), but first the author skilfully applies a \(U\)-type operator to pass from a (quasi-)mock modular generating function to a modular one.
0 references