Multiple solutions for a class of \(p(x)\)-Kirchhoff type problems with Neumann boundary conditions (Q2841517)

From MaRDI portal





scientific article; zbMATH DE number 6191907
Language Label Description Also known as
English
Multiple solutions for a class of \(p(x)\)-Kirchhoff type problems with Neumann boundary conditions
scientific article; zbMATH DE number 6191907

    Statements

    26 July 2013
    0 references
    \(p(x)\)-Kirchhoff type problems
    0 references
    Neumann boundary conditions
    0 references
    multiple solutions
    0 references
    variational methods
    0 references
    0 references
    Multiple solutions for a class of \(p(x)\)-Kirchhoff type problems with Neumann boundary conditions (English)
    0 references
    The paper is concerned with the \(p(x)\)-Kirchhoff Neumann problem NEWLINE\[NEWLINE \begin{cases} \displaystyle -M\left(\int_\Omega \frac1{p(x)}|\nabla u|^{p(x)} dx \right)\text{div}\big(|\nabla u|^{p(x)-2}\nabla u \big) =f(x,u) & \text{ in } \Omega,\cr \displaystyle \frac{\partial u}{\partial \nu}=0 & \text{ on } \partial\Omega \end{cases} NEWLINE\]NEWLINE with \(p(x)\in C(\bar\Omega).\) It is proved a multiplicity result for the above problem using an abstract linking argument due to Brézis and Nirenberg.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references