Random doubly stochastic tridiagonal matrices (Q2841678)

From MaRDI portal





scientific article; zbMATH DE number 6192091
Language Label Description Also known as
English
Random doubly stochastic tridiagonal matrices
scientific article; zbMATH DE number 6192091

    Statements

    Random doubly stochastic tridiagonal matrices (English)
    0 references
    0 references
    0 references
    26 July 2013
    0 references
    birth and death chain
    0 references
    cutoff phenomenon
    0 references
    Markov chain
    0 references
    random matrix
    0 references
    tridiagonal doubly stochastic matrices
    0 references
    algorithm
    0 references
    Jacobi polynomial
    0 references
    eigenfunction
    0 references
    eigenvalue
    0 references
    0 references
    0 references
    0 references
    Let NEWLINE\[NEWLINE\mathcal{T}_n=\Bigg\{\left(\begin{smallmatrix} 1-c_1 &c_1 &0 &0 &\hdots &0\\ c_1&1-c_1-c_2&c_2 &0 &\hdots &0 &0\\ 0 &c_2 &1-c_2-c_3&c_3 &\hdots &0 &0\\ \vdots &\vdots &\vdots &\vdots&\ddots &\vdots &\vdots\\ 0 &0 &0 &0 &\hdots &1-c_{n-1}-c_n&c_n\\ 0 &0 &0 &0 &\hdots &c_n &1-c_n\end{smallmatrix}\right) \Big|\;0\leq c_i\in\mathbb R,\;i=1,\dots,n\Bigg\}NEWLINE\]NEWLINE be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. The authors study ``typical'' matrices \(T\in\mathcal T_n\) chosen uniformly at random in the set \(\mathcal T_n\). A simple algorithm is presented to allow direct sampling from the uniform distribution on \(\mathcal T_n\). Using this algorithm, the elements above the diagonal in \(T\) are shown to form a Markov chain. For large \(n\), the limiting Markov chain is reversible and explicitly diagonalizable with transformed Jacobi polynomials as eigenfunctions. These results are used to study the limiting behavior of such typical birth and death chains, including their eigenvalues and mixing times. The results on a uniform random tridiagonal doubly stochastic matrices are related to the distribution of alternating permutations chosen uniformly at random.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references