Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach (Q2842353)

From MaRDI portal





scientific article; zbMATH DE number 6198209
Language Label Description Also known as
English
Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach
scientific article; zbMATH DE number 6198209

    Statements

    0 references
    13 August 2013
    0 references
    fixed point method
    0 references
    Hyers-Ulam-Rassias stability
    0 references
    multi-Banach spaces
    0 references
    Euler-Lagrange mapping
    0 references
    functional equation of Euler-Lagrange-Jensen type
    0 references
    Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach (English)
    0 references
    Suppose that \(n \geq 2\). The author uses the fixed point method to prove the generalized Hyers-Ulam-Rassias stability of the additive functional equation of Euler-Lagrange-Jensen type NEWLINE\[NEWLINE\sum_{1l\leq i \leq j \leq n} f \left(\frac{r_ix_i+r_ix_j}{k}\right)=\frac{n-1}{k}\sum_{i=1}^nr_if(x_i),NEWLINE\]NEWLINE where \(r_1,\dots,r_n\in \mathbb{R}\) and \(k\) is a fixed non-zero integer in multi-normed Banach spaces. The first stability results in this setting was given by \textit{H. G. Dales} and \textit{M. S. Moslehian} [Glasg. Math. J. 49, No. 2, 321--332 (2007; Zbl 1125.39023)].
    0 references
    0 references

    Identifiers