Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach (Q2842353)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach |
scientific article; zbMATH DE number 6198209
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach |
scientific article; zbMATH DE number 6198209 |
Statements
13 August 2013
0 references
fixed point method
0 references
Hyers-Ulam-Rassias stability
0 references
multi-Banach spaces
0 references
Euler-Lagrange mapping
0 references
functional equation of Euler-Lagrange-Jensen type
0 references
Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: a fixed point approach (English)
0 references
Suppose that \(n \geq 2\). The author uses the fixed point method to prove the generalized Hyers-Ulam-Rassias stability of the additive functional equation of Euler-Lagrange-Jensen type NEWLINE\[NEWLINE\sum_{1l\leq i \leq j \leq n} f \left(\frac{r_ix_i+r_ix_j}{k}\right)=\frac{n-1}{k}\sum_{i=1}^nr_if(x_i),NEWLINE\]NEWLINE where \(r_1,\dots,r_n\in \mathbb{R}\) and \(k\) is a fixed non-zero integer in multi-normed Banach spaces. The first stability results in this setting was given by \textit{H. G. Dales} and \textit{M. S. Moslehian} [Glasg. Math. J. 49, No. 2, 321--332 (2007; Zbl 1125.39023)].
0 references