A superconvergence result for mixed finite element approximations of the eigenvalue problem (Q2842466)

From MaRDI portal





scientific article; zbMATH DE number 6198341
Language Label Description Also known as
English
A superconvergence result for mixed finite element approximations of the eigenvalue problem
scientific article; zbMATH DE number 6198341

    Statements

    0 references
    0 references
    14 August 2013
    0 references
    second-order elliptic eigenvalue problem
    0 references
    mixed finite element method
    0 references
    superconvergence
    0 references
    eigenfunction approximation
    0 references
    lowest-order Raviart-Thomas approximation
    0 references
    numerical experiments
    0 references
    A superconvergence result for mixed finite element approximations of the eigenvalue problem (English)
    0 references
    The paper deals with the following second-order elliptic eigenvalue problem: find \(\left( p,\lambda \right) \;\)such that NEWLINE\[NEWLINE -\nabla \cdot \left( \mathcal{A\nabla }p\right) +\varphi p=\lambda \rho p \text{ in }\Omega ,\text{ }\mathcal{B}\left( p\right) =0\text{ on }\partial \Omega ,\text{ }\int_{\partial \Omega }\rho p^{2}\text{d}\Omega =1,\; NEWLINE\]NEWLINE \ where\ \(0\leq \varphi \in W^{0,\infty }\left( \Omega \right)\), \( 0<c_{0}\leq \rho \in W^{0,\infty }\left( \Omega \right)\), \(\Omega \subset \mathbb{R}^{2}\) is a bounded domain with Lipschitz boundary \(\partial \Omega \), \(\mathcal{A}\) is a symmetric positive definite matrix with the components in \(W^{1,\infty }\left( \Omega \right) \) and \(\mathcal{B}\left( p\right) \) denotes the boundary condition which can be of Dirichlet or Neumann type. The authors prove the superconvergence between the eigenfunction approximation and its corresponding mixed finite element projection for the lowest-order Raviart-Thomas approximation.They introduce a new way to derive the superconvergence by general mixed finite element methods which have the commuting diagram property. Numerical experiments confirm the theoretical analysis.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references