A variational McShane integral characterization of the Radon-Nikodým property (Q2843871)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A variational McShane integral characterization of the Radon-Nikodým property |
scientific article; zbMATH DE number 6201642
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A variational McShane integral characterization of the Radon-Nikodým property |
scientific article; zbMATH DE number 6201642 |
Statements
26 August 2013
0 references
Radon-Nikodým property
0 references
Banach space
0 references
additive interval function
0 references
McShane variational measure
0 references
0.98039985
0 references
0.9388782
0 references
0.9306785
0 references
0.9002639
0 references
0.8869506
0 references
0.8795905
0 references
A variational McShane integral characterization of the Radon-Nikodým property (English)
0 references
It is proved that a Banach space \(X\) has the Radon-Nikodým property if and only if for every \(X\)-valued additive interval function \(\Phi \) that has absolutely continuous McShane variational measure there is a McShane integrable function \(f : [0, 1]\to X\) such that NEWLINE\[NEWLINE \Phi (I) = (\text{Mc}) \int \limits_I f NEWLINE\]NEWLINE for every interval \(I \subset [0, 1]\), and \(f\) is weakly equivalent to a measurable function \(g\).
0 references