Zero point theorems of \(m\)-accretive operators in a Banach space (Q2845229)
From MaRDI portal
| File:Ambox important.svg | This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Zero point theorems of \(m\)-accretive operators in a Banach space |
scientific article; zbMATH DE number 6200640
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Zero point theorems of \(m\)-accretive operators in a Banach space |
scientific article; zbMATH DE number 6200640 |
Statements
22 August 2013
0 references
accretive operator
0 references
iterative method
0 references
fixed point
0 references
nonexpansive mapping
0 references
zero point
0 references
Mann iterative process
0 references
strong convergence
0 references
Zero point theorems of \(m\)-accretive operators in a Banach space (English)
0 references
The purpose of this paper is to continue to study the problem of finding zero points of \(m\)-accretive operators by the modified Mann iterative process in a more general framework of Banach spaces, and establish strong convergence theorems of zero points of \(m\)-accretive operators.
0 references