Bloch-to-BMOA compositions on complex balls (Q2846847)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bloch-to-BMOA compositions on complex balls |
scientific article; zbMATH DE number 6204356
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bloch-to-BMOA compositions on complex balls |
scientific article; zbMATH DE number 6204356 |
Statements
Bloch-to-BMOA compositions on complex balls (English)
0 references
3 September 2013
0 references
Bloch space
0 references
BMOA
0 references
composition operator
0 references
Let \(\mathbb{B}_n\) denote the unit ball in \(\mathbb{C}^n\), \(H(\mathbb{B}_n)\) denote the holomorphic functions on \(\mathbb{B}_n\). For a map \(\varphi:\mathbb{B}_n\to \mathbb{B}_m\) the composition operator \(C_\varphi\) is defined on \(H(\mathbb{B}_n)\) by \(C_\varphi(f)=f\circ\varphi\). The Bloch space of functions \(\mathcal{B}(\mathbb{B}_n)\) is the set of holomorphic functions on \(\mathbb{B}_n\) such that NEWLINE\[NEWLINE\left| f(0)\right|+\sup_{w\in \mathbb{B}_n} \left| \nabla f(w)\right| (1-\left| w\right|^2)<\infty,NEWLINE\]NEWLINE NEWLINENEWLINEand the space \(\mathrm{BMOA}(\mathbb{B}_n)\) is the space of holomorphic functions with bounded mean oscillation, namely NEWLINE\[NEWLINE \left| f(0)\right|+\sup_{\xi\in\partial\mathbb{B}_n, r>0} \frac{1}{\sigma_n(Q)}\int_Q\left| f^*-f_Q^*\right| d\sigma_n<\infty, NEWLINE\]NEWLINE NEWLINENEWLINEwhere \(Q=Q_r(\zeta)=\big\{\xi\in\partial\mathbb{B}_n: \left| 1-\langle \xi,\zeta\rangle\right|<r\big\}\), \(f^*\) is the radial boundary limit of the function \(f\), \(f_Q^*\) is the average of \(f^*\) over the set \(Q\) and \(\sigma_n\) is Lebesgue measure on the boundary of \(\mathbb{B}_n\). Set NEWLINE\[NEWLINE \beta_m(w_1,w_2)=\log\frac{1+\left| \phi_{w_1}(w_2)\right|}{1-\left| \phi_{w_1}(w_2)\right|}, NEWLINE\]NEWLINENEWLINENEWLINE where \(\phi_{w_1}(w_2)\) is the automorphism of \(\mathbb{B}_m\) that interchanges the points \(w_1\) and \(w_2\).NEWLINENEWLINEThe main result of this paper is to characterize the bounded composition operators \(C_\varphi: \mathcal{B}(\mathbb{B}_m)\to \mathrm{BMOA}(\mathbb{B}_n)\). In particular, \(C_\varphi: \mathcal{B}(\mathbb{B}_m)\to \mathrm{BMOA}(\mathbb{B}_n)\) is bounded if and only if NEWLINE\[NEWLINE \sup_{z\in\mathbb{B}_n}\sup_{0<r<1}\int_{\partial\mathbb{B}_n} \beta_m(\varphi(\phi_z(r\zeta)), \varphi(z)) d\sigma_n(\zeta)<\infty. NEWLINE\]
0 references