\(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) (Q2846921)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) |
scientific article; zbMATH DE number 6204563
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) |
scientific article; zbMATH DE number 6204563 |
Statements
4 September 2013
0 references
pseudo-differential operators
0 references
nuclear operators
0 references
2/3-nuclear operators
0 references
traces
0 references
Lidskii's formula
0 references
eigenvalues
0 references
0 references
0 references
0.93693614
0 references
0.9366809
0 references
0.93157136
0 references
0.9159335
0 references
0.91475844
0 references
0.9129328
0 references
0.90860075
0 references
0.90850174
0 references
\(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) (English)
0 references
The authors consider pseudo-differential operators on the unit circle \(\mathbb{S}^1\) of the form NEWLINE\[NEWLINEPf(x)= \sum^{+\infty}_{n=-\infty} e^{inx} \sigma(x,n)\,\widehat f(n),\quad x\in [-\pi,\pi],NEWLINE\]NEWLINE where \(\widehat f\) is the Fourier transform of \(f\). Sufficient conditions on the symbol \(\sigma\) in order to ensure the boundedness of \(P: L^p(\mathbb{S}^1)\to L^p(\mathbb{S}^1)\), \(1\leq p<\infty\), were given by \textit{S. Molahajloo} and \textit{M. W. Wong} [Operator Theory: Advances and Applications 189, 297--306 (2009; Zbl 1210.47073)].NEWLINENEWLINE In the present paper, the authors give sufficient conditions on \(\sigma\) for the nuclearity of \(P: L^{p_1}(\mathbb{S}^1)\to L^{p_2}(\mathbb{S}^1)\), \(1\leq p_1\), \(p_2<\infty\).
0 references