\(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) (Q2846921)

From MaRDI portal





scientific article; zbMATH DE number 6204563
Language Label Description Also known as
English
\(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\)
scientific article; zbMATH DE number 6204563

    Statements

    0 references
    0 references
    4 September 2013
    0 references
    pseudo-differential operators
    0 references
    nuclear operators
    0 references
    2/3-nuclear operators
    0 references
    traces
    0 references
    Lidskii's formula
    0 references
    eigenvalues
    0 references
    \(L^p\)-nuclear pseudo-differential operators on \(\mathbb Z\) and \(\mathbb S^1\) (English)
    0 references
    The authors consider pseudo-differential operators on the unit circle \(\mathbb{S}^1\) of the form NEWLINE\[NEWLINEPf(x)= \sum^{+\infty}_{n=-\infty} e^{inx} \sigma(x,n)\,\widehat f(n),\quad x\in [-\pi,\pi],NEWLINE\]NEWLINE where \(\widehat f\) is the Fourier transform of \(f\). Sufficient conditions on the symbol \(\sigma\) in order to ensure the boundedness of \(P: L^p(\mathbb{S}^1)\to L^p(\mathbb{S}^1)\), \(1\leq p<\infty\), were given by \textit{S. Molahajloo} and \textit{M. W. Wong} [Operator Theory: Advances and Applications 189, 297--306 (2009; Zbl 1210.47073)].NEWLINENEWLINE In the present paper, the authors give sufficient conditions on \(\sigma\) for the nuclearity of \(P: L^{p_1}(\mathbb{S}^1)\to L^{p_2}(\mathbb{S}^1)\), \(1\leq p_1\), \(p_2<\infty\).
    0 references
    0 references

    Identifiers