A Bombieri-Vinogradov theorem for all number fields (Q2847130)

From MaRDI portal





scientific article; zbMATH DE number 6204983
Language Label Description Also known as
English
A Bombieri-Vinogradov theorem for all number fields
scientific article; zbMATH DE number 6204983

    Statements

    A Bombieri-Vinogradov theorem for all number fields (English)
    0 references
    0 references
    0 references
    4 September 2013
    0 references
    Bombieri-Vinogradov theorem
    0 references
    number field
    0 references
    Chebotarev density theorem
    0 references
    conjugacy class
    0 references
    Let \(K/M\) be a Galois extension of number fields. For an unramified prime ideal \(\mathfrak{p}\) of \(M\), let \(\sigma_{\mathfrak{p}}\) be the corresponding Frobenius conjugacy class \(\sigma_{\mathfrak{p}}\). The goal of this paper is a Bombieri-Vinogradov theorem for prime ideals \(\mathfrak{p}\) for which the conjugacy class \(\sigma_{\mathfrak{p}}\) is specified. The paper extends work of [the first author and \textit{V. K. Murty}, in: Number theory, Proc. Conf., Montreal/Can. 1985, CMS Conf. Proc. 7, 243--272 (1987; Zbl 0619.10039)], which concerned the case \(M=\mathbb{Q}\).NEWLINENEWLINETo be more precise, let \(G=\)Gal\((K/M)\) and let \(C\) be a conjugacy class of \(G\). For coprime integers \(a\) and \(q\) with \(q\geq 1\) we write \(\pi(x,C,q,a)\) for the number of unramified prime ideals \(\mathfrak{p}\) of \(K\) of norm \(N(\mathfrak{p})\leq x\), and such that \(\sigma_{\mathfrak{p}}=C\) and \(N(\mathfrak{p})\equiv a\)(mod \(q)\). If NEWLINE\[NEWLINEK\cap\mathbb{Q}(\zeta_q)=\mathbb{Q},\;\;\; (*)NEWLINE\]NEWLINE then we have NEWLINE\[NEWLINE\pi(x,C,q,a)\sim\frac{|C|}{|G|\phi(q)}\pi(x),\;\;(x\rightarrow\infty),NEWLINE\]NEWLINE by the Chebotarev density theorem.NEWLINENEWLINEThe result of the present paper is then that NEWLINE\[NEWLINE{\sum_{q\leq x^{\theta}}^{}}^* \max_{y\leq x}\max_{(a,q)=1}\left| \pi(y,C,q,a)-\frac{|C|}{|G|\phi(q)}\pi(y)\right|\ll_{A,K,\theta} \frac{x}{(\log x)^A},NEWLINE\]NEWLINE where \(\Sigma^*\) indicates that the sum is restricted to \(q\) satisfying (*). Here \(\theta\) may be any fixed exponent such that NEWLINE\[NEWLINE\theta^{-1}>\max([E:\mathbb{Q}]-2\,,\,2),NEWLINE\]NEWLINE where \(E\) is the fixed field of \(H\), the largest abelian subgroup of \(G\) such that \(H\cap C\not=\emptyset\).NEWLINENEWLINEThe proof handles small \(q\) via a consideration of Siegel zeros for Artin \(L\)-functions. For the remaining range one uses a Vaughan type decomposition for Dirichlet polynomials involving the von Mangoldt function for \(K\), weighted by an appropriate group character. This is coupled with estimates of large sieve type for such characters.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references