Optimality of Chebyshev bounds for Beurling generalized numbers (Q2847831)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Optimality of Chebyshev bounds for Beurling generalized numbers |
scientific article; zbMATH DE number 6207632
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Optimality of Chebyshev bounds for Beurling generalized numbers |
scientific article; zbMATH DE number 6207632 |
Statements
Optimality of Chebyshev bounds for Beurling generalized numbers (English)
0 references
11 September 2013
0 references
Beurling generalized numbers
0 references
Chebyshev prime bounds
0 references
optimality
0 references
Let \(N(x)\) and \(\pi(x)\) denote the counting functions of integers, respectively primes in a Beurling generalized number system. It is known that the conditions NEWLINE\[NEWLINE \int_1^{\infty} x^{-2} |N(x)-Ax|\, dx < \infty NEWLINE\]NEWLINE and NEWLINE\[NEWLINE (N(x)-Ax)x^{-1}\log x =O(1) NEWLINE\]NEWLINE imply the Chebyshev bound \(\pi(x)\ll x/\log x\). The authors show that given any positive valued function \(f\) satisfying \(\lim_{x\to \infty} f(x)=\infty\), the above first condition and NEWLINE\[NEWLINE (N(x)-Ax)x^{-1}\log x =O(f(x)) NEWLINE\]NEWLINE do not imply the same Chebyshev bound.
0 references