Optimality of Chebyshev bounds for Beurling generalized numbers (Q2847831)

From MaRDI portal





scientific article; zbMATH DE number 6207632
Language Label Description Also known as
English
Optimality of Chebyshev bounds for Beurling generalized numbers
scientific article; zbMATH DE number 6207632

    Statements

    Optimality of Chebyshev bounds for Beurling generalized numbers (English)
    0 references
    0 references
    0 references
    11 September 2013
    0 references
    Beurling generalized numbers
    0 references
    Chebyshev prime bounds
    0 references
    optimality
    0 references
    Let \(N(x)\) and \(\pi(x)\) denote the counting functions of integers, respectively primes in a Beurling generalized number system. It is known that the conditions NEWLINE\[NEWLINE \int_1^{\infty} x^{-2} |N(x)-Ax|\, dx < \infty NEWLINE\]NEWLINE and NEWLINE\[NEWLINE (N(x)-Ax)x^{-1}\log x =O(1) NEWLINE\]NEWLINE imply the Chebyshev bound \(\pi(x)\ll x/\log x\). The authors show that given any positive valued function \(f\) satisfying \(\lim_{x\to \infty} f(x)=\infty\), the above first condition and NEWLINE\[NEWLINE (N(x)-Ax)x^{-1}\log x =O(f(x)) NEWLINE\]NEWLINE do not imply the same Chebyshev bound.
    0 references

    Identifiers