A coarea-type formula for the relaxation of a generalized elastica functional (Q2850725)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A coarea-type formula for the relaxation of a generalized elastica functional |
scientific article; zbMATH DE number 6212961
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A coarea-type formula for the relaxation of a generalized elastica functional |
scientific article; zbMATH DE number 6212961 |
Statements
30 September 2013
0 references
coarea-type formula
0 references
generalized elastica functional
0 references
lower semicontinuity
0 references
relaxation
0 references
math.OC
0 references
A coarea-type formula for the relaxation of a generalized elastica functional (English)
0 references
Let \(\overline{F}(u),u\in L^1(\mathbb R^2)\) be the relaxation of the generalized elastica functional NEWLINE\[NEWLINE F(u)= \begin{cases} \int_{R^2}|\nabla u|\Big (\alpha+\beta\Big |\text{div} \frac{\nabla u}{|\nabla u|}\Big |^p \Big ) dx,\; p>1,\;\alpha>0,\; \beta\;\geq 0,\\ \infty, \text{otherwise}, \end{cases} NEWLINE\]NEWLINE i.e. NEWLINE\[NEWLINE \overline{F}(u)=\inf\Big \{\lim_{h\rightarrow \infty}\inf F(u_h):\{u_h\}\subset C^2(\mathbb R^2),u_h\rightarrow u\; \text{in the sense of}\; L^1(\mathbb R^2) \Big\}. NEWLINE\]NEWLINE In the work, the \(L^1(R^2)\)-lower semicontinuity of the functional \(\overline{F}(u)\) is proved. Moreover, for any \(u\in BV(\mathbb R^2)\) the functional \(\overline{F}(u)\) is represented by a coarea-type formula. Finally, examples are discussed.
0 references