A uniqueness result for Kirchhoff type problems with singularity (Q285080)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A uniqueness result for Kirchhoff type problems with singularity |
scientific article; zbMATH DE number 6582008
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A uniqueness result for Kirchhoff type problems with singularity |
scientific article; zbMATH DE number 6582008 |
Statements
A uniqueness result for Kirchhoff type problems with singularity (English)
0 references
18 May 2016
0 references
Kirchhoff type problems
0 references
singularity
0 references
uniqueness
0 references
minimax method
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
The authors consider the following Kirchhoff type problem with singularity NEWLINE\[NEWLINE \begin{cases} -\left(a+b\int_\Omega |\nabla u|^2\,dx \right)\Delta u = f(x) u^{-\gamma}-\lambda u^p & \text{ in } \Omega,\cr u>0 & \text{ in } \Omega,\cr u=0 & \text{ on } \partial \Omega, \end{cases} NEWLINE\]NEWLINE where \(\Omega\subset \mathbb R^N, N\geq 3\) is a bounded domain, \(0<\gamma<1,\) \(\lambda\geq 0,\) \(0<p\leq 2^*-1,\) \(a,b\geq 0\) and \(f\in L^{\frac{2^*}{2^*+\gamma-1}}(\Omega).\) By using the minimax method and some analysis techniques, they obtain uniqueness of positive solutions.
0 references