Multiplicity one theorems for Fourier-Jacobi models (Q2851609)

From MaRDI portal





scientific article; zbMATH DE number 6215443
Language Label Description Also known as
English
Multiplicity one theorems for Fourier-Jacobi models
scientific article; zbMATH DE number 6215443

    Statements

    Multiplicity one theorems for Fourier-Jacobi models (English)
    0 references
    14 October 2013
    0 references
    local field
    0 references
    admissible smooth representation
    0 references
    symplectic group
    0 references
    metaplectic cover
    0 references
    0 references
    Let \(k\) be a non-Archimedean local field of characteristic zero. Let \(G\) denote the group \(\mathrm{GL}(n)\), \(U(n)\), or \(\mathrm{Sp}(2n)\), defined over \(k\), and regarded as a subgroup of the symplectic group \(\mathrm{Sp}(2n)\). Let \(\widetilde{G}\) be the double cover of \(G\) induced by the metaplectic cover \(\widetilde{\mathrm{Sp}}(2n)\) of \(\mathrm{Sp}(2n)\). Denote by \(\omega_\psi\) the smooth oscillator representation of \(\widetilde{\mathrm{Sp}}(2n)\) corresponding to a nontrivial character \(\psi\) of \(k\). The author proves that for every irreducible admissible smooth representation \(\pi\) of \(G\), and any genuine irreducible admissible smooth representation \(\pi'\) of \(\widetilde{G}\), one has NEWLINE\[NEWLINE \dim \text{Hom}_G (\pi' \otimes \omega_\psi \otimes \pi ,\mathbb C)\leq 1. NEWLINE\]NEWLINE For earlier ``multiplicity one theorems'' see [\textit{A. Aizenbud} et al., Ann. Math. (2) 172, No. 2, 1407--1434 (2010; Zbl 1202.22012)].
    0 references

    Identifiers