A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect (Q2852332)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect |
scientific article; zbMATH DE number 6214030
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect |
scientific article; zbMATH DE number 6214030 |
Statements
A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect (English)
0 references
8 October 2013
0 references
uniform boundedness
0 references
convergence to equilibrium
0 references
non-smooth Simon-Ćojasiewicz approach
0 references
convergence rate
0 references
In the one dimensinal case the following coupled system of quasilinear parabolic equations NEWLINE\[NEWLINEu_t=\nabla\cdot \left\{D(u)\nabla u-B(u)\nabla \upsilon \right\},\,\,\, (x,t) \in \Omega\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINE\upsilon_{t}=\alpha\Delta\upsilon-\beta\upsilon+\gamma u,\,\,\,\, (x,t)\in \Omega\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINE \nabla u \cdot \overrightarrow{n}=0,\,\,\,\,\, \nabla\upsilon\cdot\overrightarrow{n}=0,\,\,\,\, (x,t)\in \Gamma\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(x,0)=u_{0}(x)\geq 0,\,\,\, \upsilon(x,0)=\upsilon_{0}(x)\geq 0,\,\,\,\, x\in \Omega, NEWLINE\]NEWLINE with NEWLINE\[NEWLINEB(u)=\chi_{0} uq(u)=\chi_{0}u(1+u)^{-\lambda}, \,\,\,\,\,\,\;\lambda>0,NEWLINE\]NEWLINE and NEWLINE\[NEWLINE D(u)=D_{0}(q(u)-uq'(u))=D_{0}\frac{1+(\lambda+1)u}{((1+u)^{\lambda+1}}, NEWLINE\]NEWLINE where \(\Omega \in \mathbb{R}^{n}\) is a bounded domain with smooth boundary \(\Gamma,\alpha,\beta,\gamma,\lambda,\chi_{0},D_{0}\) are given positive constants, and \(\overrightarrow{n}\) denotes the outer normal vector, is studied. The global existence and uniqueness of the classical solution, convergence to equilibrium of the global solution, as time goes to infinity, as well as the convergence rate are proved.
0 references