A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect (Q2852332)

From MaRDI portal





scientific article; zbMATH DE number 6214030
Language Label Description Also known as
English
A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect
scientific article; zbMATH DE number 6214030

    Statements

    A 1-d quasilinear nonuniform parabolic chemotaxis model with volume-filling effect (English)
    0 references
    0 references
    0 references
    8 October 2013
    0 references
    uniform boundedness
    0 references
    convergence to equilibrium
    0 references
    non-smooth Simon-Ɓojasiewicz approach
    0 references
    convergence rate
    0 references
    In the one dimensinal case the following coupled system of quasilinear parabolic equations NEWLINE\[NEWLINEu_t=\nabla\cdot \left\{D(u)\nabla u-B(u)\nabla \upsilon \right\},\,\,\, (x,t) \in \Omega\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINE\upsilon_{t}=\alpha\Delta\upsilon-\beta\upsilon+\gamma u,\,\,\,\, (x,t)\in \Omega\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINE \nabla u \cdot \overrightarrow{n}=0,\,\,\,\,\, \nabla\upsilon\cdot\overrightarrow{n}=0,\,\,\,\, (x,t)\in \Gamma\times(0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(x,0)=u_{0}(x)\geq 0,\,\,\, \upsilon(x,0)=\upsilon_{0}(x)\geq 0,\,\,\,\, x\in \Omega, NEWLINE\]NEWLINE with NEWLINE\[NEWLINEB(u)=\chi_{0} uq(u)=\chi_{0}u(1+u)^{-\lambda}, \,\,\,\,\,\,\;\lambda>0,NEWLINE\]NEWLINE and NEWLINE\[NEWLINE D(u)=D_{0}(q(u)-uq'(u))=D_{0}\frac{1+(\lambda+1)u}{((1+u)^{\lambda+1}}, NEWLINE\]NEWLINE where \(\Omega \in \mathbb{R}^{n}\) is a bounded domain with smooth boundary \(\Gamma,\alpha,\beta,\gamma,\lambda,\chi_{0},D_{0}\) are given positive constants, and \(\overrightarrow{n}\) denotes the outer normal vector, is studied. The global existence and uniqueness of the classical solution, convergence to equilibrium of the global solution, as time goes to infinity, as well as the convergence rate are proved.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references