On trace spaces of 2-microlocal Besov spaces with variable integrability (Q2852455)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On trace spaces of 2-microlocal Besov spaces with variable integrability |
scientific article; zbMATH DE number 6214134
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On trace spaces of 2-microlocal Besov spaces with variable integrability |
scientific article; zbMATH DE number 6214134 |
Statements
On trace spaces of 2-microlocal Besov spaces with variable integrability (English)
0 references
8 October 2013
0 references
2-microlocal Besov spaces with variable integrability
0 references
trace spaces
0 references
0 references
Let \(L_{p(\cdot)} (\mathbb R^n)\) be the \(L_p\)-spaces with varying integrability \(0<p_- \leq p(x) \leq p_+ <\infty\), \(x\in \mathbb R^n\) (and some mild smoothness assumptions). Let \(w= (w_j )^\infty_{j=0}\) be an admissible weight sequence with NEWLINE\[NEWLINE 0<w_j (x) \leq C \, w_j(y) \big( 1 + 2^j |x-y|)^\alpha, \qquad j \in \mathbb N_0, \quad x,y \in \mathbb R^n. NEWLINE\]NEWLINE Let \(\{ \varphi_j \}^\infty_{j=0}\) be the usual dyadic resolution of unity in \(\mathbb R^n\). Then \(B^w_{p(\cdot),q} (\mathbb R^n)\) with \(0<q \leq \infty\) collects all \(f\in S' (\mathbb R^n)\) such that NEWLINE\[NEWLINE \| f \, | B^w_{p(\cdot),q} (\mathbb R^n) \| = \Big( \sum^\infty_{j=0} \| w_j (\varphi_j \hat{f})^\vee \, | L_{p(\cdot)} (\mathbb R^n) \|^q \Big)^{1/q} NEWLINE\]NEWLINE is finite. This covers in particular the classical Besov spaces \(B^s_{p,q} (\mathbb R^n)\). It is the main aim of this paper to determine the trace of these spaces on the hyperplane \(\mathbb R^{n-1}\), NEWLINE\[NEWLINE \text{Tr}\, B^w_{p(\cdot),q} (\mathbb R^n) = B^{\tilde{w}}_{\tilde{p}(\cdot),q} (\mathbb R^{n-1}) NEWLINE\]NEWLINE within the scale of these spaces. This is based on related atomic decompositions and embeddings.
0 references