Matrix Young numerical radius inequalities (Q2853311)

From MaRDI portal





scientific article; zbMATH DE number 6217274
Language Label Description Also known as
English
Matrix Young numerical radius inequalities
scientific article; zbMATH DE number 6217274

    Statements

    Matrix Young numerical radius inequalities (English)
    0 references
    0 references
    0 references
    21 October 2013
    0 references
    numerical radius inequality
    0 references
    Young inequality
    0 references
    norm
    0 references
    positive matrices
    0 references
    Schur product
    0 references
    Schur complement
    0 references
    Let \(T\) be a bounded linear operator on a Hilbert space \(\mathcal{H}\). Then the numerical radius of \(T\) is defined by NEWLINE\[NEWLINE\omega (T) = \sup \{|\langle Tf, f \rangle | : f \in \mathcal{H}, \|f\| = 1\}.NEWLINE\]NEWLINE The main result of the paper states that for \(p > q > 1\) such that \(\frac{1}{p} + \frac{1}{q} = 1\), and for \(A \in M_n(\mathbb{C})\), a non scalar strictly positive matrix such that \(1 \in \sigma(A)\), there exists \(X \in M_n(\mathbb{C})\) such that NEWLINE\[NEWLINE\omega(AXA) > \omega (\frac{1}{p} A^p X + \frac{1}{q} X A^q).NEWLINE\]NEWLINEThe proof uses the Schur product and the Schur complement techniques of matrices. The authors also explore some general inequalities concerning the numerical radius for matrices.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references