Nonlinear Markov semigroups on \(C^{\ast}\)-algebras (Q2854012)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonlinear Markov semigroups on \(C^{\ast}\)-algebras |
scientific article; zbMATH DE number 6215970
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonlinear Markov semigroups on \(C^{\ast}\)-algebras |
scientific article; zbMATH DE number 6215970 |
Statements
17 October 2013
0 references
\(C^*\)-algebra
0 references
dissipative set
0 references
nonlinear semigroup
0 references
strongly positive semigroup
0 references
nonlinear quantum dynamical evolution
0 references
Nonlinear Markov semigroups on \(C^{\ast}\)-algebras (English)
0 references
The authors are concerned with characterizing nonlinear semigroups on \(C^*\)-algebras, useful when describing irreversible nonlinear evolutions of quantum systems. Let \({\mathcal A}\) denote a unital \(C^*\)-algebra, \(F:{\mathcal A}- 2^{\mathcal A}\), \(D(F):=\{x\in{\mathcal A}: F(x)\neq\emptyset\}\), and \(R(F ):= F[D(F)]\). Suppose that \(\exists_{\mu>0}\forall_{\lambda<\mu} \overline{D(F)}\subset R(I-\lambda F)\), then \(F\) generates a non-expansive semigroup \((S_t)_{t\geq 0}\) on \(D(F)\) via the Crandall-Liggett formula, \(S_t(x):= (1-tF(x)/n)^{-n}\).NEWLINENEWLINE Denote \({\mathcal A}_+:= \{x\in{\mathcal A}: x\neq 0\}\), \({\mathcal A}_{sa}:= \{x\in{\mathcal A}: x^*= x\}\) and recall that, by definition, \((S_t)_{t\geq 0}\) is, respectively, real if \(D\cap{\mathcal A}_{as}\neq\emptyset\) and \(\forall_t S_t[D\cap{\mathcal A}_{sa}]\subset{\mathcal A}_{sa}\), positive if \(D\cap{\mathcal A}_+\neq\emptyset\) and \(\forall_t S_t[D\cap{\mathcal A}_+]\subset{\mathcal A}_+\), strongly positive if \(x\in D\) implies \(x^*x\in D\) and \(\forall_t S_t(x^*x)\geq S_t(x)^*S_t(x)\), monotonic if it is real and for all \(x,y\in D\cap{\mathcal A}_+\) such that \(x\leq y\) also \(\forall_t S_t(x)\leq S_t(y)\), and Markovian if it is real, positive, contractive, and subunital. The authors find criteria for \((S_t)_{t\geq 0}\) to be, respectively, (1) real, (2) real and positive, (3) monotonic, (4) strongly positive and monotonic Markovian.
0 references